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Studying extremes with models vs ML

General Circulation Models (GCMs) when used for extremes of : [1]

At the regional scale, are still limited by the rarity of events
To capture processes requires running expensive simulations
Can machine learning be used to extract useful information from smaller datasets?

European heat wave 2003 Changes in temperatures[2]

[1] S. Seneviratne et al., A Special Report of Working Groups I and II of the IPCC (2012)
[2] S. E. Perkins, Atmospheric Research (2015)
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From pattern recognition to physical models and back

Bjerknes
Analogs [3] Physical Models CPUs bottleneck

ML in mod-
eling?[4]

Recent success in deterministic intermediate range forecast with GraphCast [5]

Recent papers report advances in predicting extreme heatwaves with ML [6] [7] [8]

These Neural Networks are NOT trained for probabilistic prediction of extremes

This is because the methods often used MSE or MCC as the target

This is not optimal for UQ and probabilistic extreme event forecasting

[4] E. N. Lorenz, Journal of Atmospheric Sciences (1969)
[5] V. Balaji, Phil. Trans.of the Royal Soc.A: Math., Phys.and Eng. Sciences (2021)
[6] R. Lam et al., (Dec. 24, 2022)
[7] A. Chattopadhyay et al., Journal of Advances in Modeling Earth Systems (2020)
[8] V. Jacques-Dumas et al., Frontiers in Climate (2022)
[9] I. Lopez-Gomez et al., Artificial Intelligence for the Earth Systems (Dec. 19, 2022)

George Miloshevich (LSCE) gmiloshe@lsce.ipsl.fr georgemilosh.github.io 4 / 20



Probabilistic scores: what remains to be done for heatwaves
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Probabilistic forecasting of heatwaves using Brier Score with Random Forest[10]

BS is a strictly proper score but depends on never occurred events

BS =
1

𝑛

𝑛∑︁
𝑘=1

|𝑝𝑘 − 𝑒𝑘 |2 (1)

Logarithmic (a.k.a, cross-entropy) score is suitable for rare events[11]

[10] C. v. Straaten et al., Monthly Weather Review (May 1, 2022)
[11] R. Benedetti, Monthly Weather Review (2010)
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Defining heatwaves and Normalized Log Score

HW: extreme of space-time averaged temperature anomalies:

𝐴𝑇 (𝑡) =
1

𝑇

∫ 𝑡+𝑇

𝑡

1

|D|

∫
𝐷

(𝑇2𝑚 − E (𝑇2𝑚)) (®𝑟, 𝑢) d®𝑟d𝑢 (2)

Duration: 𝑇 = 14 days Area 𝐷 - “France”/“Scandinavia”

The goal: find 𝑃(𝐴(𝑡) > 𝑎 |𝑋 (𝑡 − 𝜏), 𝜏) with lead time 𝜏

Logarithmic (cross-entropy) score suitable for rare events[12]

Threshold 𝛼 is chosen so that 𝑌 = 1 is above 95 percentile

𝑆 [𝑝𝑌 (𝑋)] = −
𝐾−1∑︁
𝑘=0

𝑌𝑘 log [𝑝𝑘 (𝑥)] , 𝐾 = 2 for binary (3)

Normalized Log Score (NLS): subtract climatological prediction

NLS =
−∑

𝑖 𝑝𝑖 log 𝑝𝑖 − E {𝑆 [𝑝𝑌 (𝑋)]}
−∑

𝑖 𝑝𝑖 log 𝑝𝑖
(4)

[12] R. Benedetti, Monthly Weather Review 138, 203 –211 (2010)
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CNN trained on 8000 years of Plasim simulation
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Def: HW is 95th percentile of 𝐴(𝑡)
𝑋 (𝜏) - data at time 𝜏 preceding HW

𝑋0 = 𝑡𝑀 - 2m temperature, France mask
𝑋1 = 𝑧𝐺 - 500hPa geopotential height
𝑋2 = 𝑠𝑀 - soil moisture, France mask

Training performed with Tensorflow-GPU 2.4 on 554400 samples that are 22 by 128 by 3
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Geopotential/soil moisture contributions
𝑘-Fold cross-validation is used to assess the variance of the skill with 𝑘 = 10 folds

The CNN was optimized using cross-validation tuning hyperparameters

We present the plots of NLS vs lead time 𝜏 selecting different fields [13]

𝑠𝑀 has long-term, while 𝑧𝐺 has short-term information
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Possible field inputs in stacked
architecture which works better
for heatwave classification

[13] G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)
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Learning regional correlations vs data length
We present the plots of NLS vs lead time time 𝜏

Having less data, some global teleconnections not represented well [14]

In reanalysis only the data from 1950 to present is available

𝑧𝐴, North Atlantic

trained on 100 years

trained on 800 years

NLS data reduction 𝑧𝐺 North Hemisphere

[14] G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)
George Miloshevich (LSCE) gmiloshe@lsce.ipsl.fr georgemilosh.github.io 9 / 20



Smoothness of the committor & transfer learning

𝑞 = 𝑞(𝜏) is expected to be a smoothly increase closer to the heat wave

This property is epected to play a role in rare event algorithm

We achieve this by transfer learning applied to successive 𝜏 [15]

Training pipeline 𝑞𝑡𝑀 ,𝑧𝐺 ,𝑠𝑀 vs transfer learning

[15] G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)
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Stochastic Weather Generator a.k.a. Analog Markov chain

Analogs are sought using 𝑋𝑛★ = argmin
{𝑋𝑛}

{𝑑 (𝑥, 𝑋𝑛)} (5)

Analog method

SWG is used often to estimate the probability of circulation models

Problem (1): how to combine different vars in Euclidean 𝑑? Global (G) vs Local (L)

Problem (2): in big models: curse of high dimensionality (𝑧𝐺)

𝑑 (𝑋1, 𝑋2) =
[

𝛼

𝜎2
𝑍
dim(𝑍𝐺)

dim(𝑍)𝐺∑︁
𝑖=1

(
Δ𝑍 𝐼𝐺

)2
+ 1

𝜎2
𝑇

(
Δ𝑇 𝐼𝐿

)2
+ 1

𝜎2
𝑆

(
Δ𝑆𝐼𝐿

)2] 1
2

(6)

[15] P. Yiou et al., https://hal.archives-ouvertes.fr/hal-03921111 (Jan. 2023)
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Alternative solution: Variational Autoencoder

MNIST latent space

𝑝(𝑧 | 𝑥) = 𝑝(𝑥 | 𝑧)𝑝(𝑧)∫
𝑝(𝑥 | 𝑢)𝑝(𝑢)𝑑𝑢

𝑝(𝑧 | 𝑥) ∼ 𝑞𝑥 (𝑧) ≡ N (𝑔(𝑥), ℎ(𝑥))

Schematics of a (variational) autoencoder

𝑝(𝑧) ≡ N (0, 𝐼)
𝑝(𝑥 | 𝑧) ≡ N ( 𝑓 (𝑧), 𝑐𝐼)

( 𝑓 ∗, 𝑔∗, ℎ∗) = argmax
( 𝑓 ,𝑔,ℎ)∈𝐹×𝐺×𝐻

(
E𝑧∼𝑞𝑥

(
−‖𝑥 − 𝑓 (𝑧)‖2

2𝑐

)
− 𝐾𝐿 (𝑞𝑥 (𝑧), 𝑝(𝑧))

)
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Stochastic Weather Generator vs CNN

Variational AutoEncoder (VAE) reduces dimension

We SWG to the latent space of VAE and optimize

10000 trajectories per validation day are launched
(numba parallelism)

Markov Chain (dim z = 16), CNN Optimizing weights

reconstruction

[15] G. Miloshevich et al., In preparation (2022)
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Return times of long time series generated by SWG (𝛼0 = 1)

Dashed line: analog come from a dataset whose lenght is 90 years
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Return times of long time series generated by SWG (𝛼0 = 50)

Dashed line: analog come from a dataset whose lenght is 90 yearsGeorge Miloshevich (LSCE) gmiloshe@lsce.ipsl.fr georgemilosh.github.io 15 / 20



Generating synthetic SWG teleconnections

90 years extreme
(𝐴(𝜏 = 0) = 4.5𝐾)

Control run composite
(𝐴(𝜏 = 0) ≥ 4.5𝐾)

SWG composite trained on 90 yrs
(𝐴(𝜏 = 0) ≥ 4.5𝐾), 𝛼0 = 50

SWG composite trained on 90 yrs
(𝐴(𝜏 = 0) ≥ 4.5𝐾), 𝛼0 = 1
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Plasim/CESM/ERA5 teleconnections (Scandinavian heatwave)

Plasim rare event[16] CESM composite[17] ERA5 July 2018

[16] F. Ragone et al., Proceedings of the National Academy of Sciences (2018)
[17] G. Miloshevich et al., “Drivers of midlatitude extreme heat waves revealed by analogues and
machine learning”, in Egu general assembly conference abstracts, EGU General Assembly Conference
Abstracts (Apr. 2021), EGU21–15642
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Hayashi spectra

𝐻𝐸 (𝑘, 𝜔), th = ∞. 𝐻𝐸 (𝑘, 𝜔), th = −4.5.
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A composite of 10 most intense heatwaves

1000 year long
PlaSim (Planet
Simulator)

No daily cycle:
stronger
land-atmosphere
coupling

The maps are
conditioned to 10
most extreme
heatwaves

The CNN will be
trained on 8000 years
of PlaSim simulation
with daily cycle
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Concluding remarks

Summary:
Intra-model spatio-temporal correlations of heatwaves reveal robust teleconnections
Probabilistic prediction occurs in the regime of lack of data requiring long datasets
How fields are encoded in the CNN or SWG affects the skill significantly
SWG sampling of extreme heatwaves validated on a very long GCM run

Possible future steps:
Improve sampling/prediction applying rare event algorithms to high res models
Improve prediction of extreme events using transfer learning: across datasets
Study other extremes and Use explainable AI to reveal the precursors
Use causal inference and/or physical losses/architectures, e.g. GNNs

Thank you for your attention!

Climate-Learning@GitHub
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