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Studying extremes with models vs ML

o General Circulation Models (GCMs) when used for extremes of : 1]
o At the regional scale, are still limited by the rarity of events
o To capture processes requires running expensive simulations
o Can machine learning be used to extract useful information from smaller datasets?

Shifted Mean

K

Probability of Occurrence

Increased Variability

Probability of Occurrence

European heat wave 2003 Changes in temperaturesl?
[1] S. Seneviratne et al., A Special Report of Working Groups | and Il of the IPCC (2012)
[2] S. E. Perkins, Atmospheric Research (2015)
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© Data-driven probabilistic forecasting of heatwaves
@ Serving calibrated probabilistic predictions
@ Convolutional Neural Networks
@ A regime of lack of data
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From pattern recognition to physical models and back

Bjerknes ML in mod-

Iil . Physical Models == CPUs bottleneck —)_

@ Recent success in deterministic intermediate range forecast with GraphCast 1%

@ Recent papers report advances in predicting extreme heatwaves with ML [61 [7] 18]
@ These Neural Networks are NOT trained for probabilistic prediction of extremes
@ This is because the methods often used MSE or MCC as the target

@ This is not optimal for UQ and probabilistic extreme event forecasting

[4] E. N. Lorenz, Journal of Atmospheric Sciences (1969)
[5] V. Balaji, Phil. Trans.of the Royal Soc.A: Math., Phys.and Eng. Sciences (2021)
[6] R.Lam et al., (Dec. 24, 2022)
[7]  A. Chattopadhyay et al., Journal of Advances in Modeling Earth Systems (2020)
[8] V. Jacques-Dumas et al., Frontiers in Climate (2022)
[9] |. Lopez-Gomez et al., Artificial Intelligence for the Earth Systems (Dec. 19, 2022)
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Probabilistic scores: what remains to be done for heatwaves

Simple Distributional e Histogram e Categorical
Regression @ Regression Estimation Classification

o T 8l L | ug

MSE CRPS ross-entropy /Brien ROC curves/MCC

@ Probabilistic forecasting of heatwaves using Brier Score with Random Forest[10]

@ BS is a strictly proper score but depends on never occurred events
1 ¢ X
BS=—>" Ipi—él’ (1)
i

Logarithmic (a.k.a, cross-entropy) score is suitable for rare events(!]

[10] C. v. Straaten et al., Monthly Weather Review (May 1, 2022)
[11] R. Benedetti, Monthly Weather Review (2010)
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Defining heatwaves and Normalized Log Score

@ HW: extreme of space-time averaged temperature anomalies:

t+T
Ar() = 7 / ﬁ /D (Tom — E (Taw)) (7. 10) dFdu )

[Duration: T=14 daysj\J ‘/{Area D - “France”/”Scandinavia”j
@ The goal: find P(A(?) > a|X(t — 1), 7) with lead time 7

@ Logarithmic (cross-entropy) score suitable for rare eventsl1?]
@ Threshold « is chosen so that ¥ =1 is above 95 percentile
Spy(X)] = Z Yilog [pr(x)], K =2 for binary (3)

(NLS): subtract climatological prediction
NLS = — i Pilogp; —E{S [py(X)]}

— — 4
- 2ip;ilogp; ( )

[12] R. Benedetti, Monthly Weather Review 138, 203 —211 (2010)
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T
e~ Xn Wk

=
Zi{,:](') e Xn Wi’/

Def: HW is 95th percentile of A(7)
@ X(7) - data at time 7 preceding HW
o Xy =tp - 2m temperature, France mask
o X; =zi - 500hPa geopotential height
o Xo = sp7 - soil moisture, France mask

Training performed with Tensorflow-GPU 2.4 on 554400 samples that are 22 by 128 by 3
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Geopotential /soil moisture contributions

@ k-Fold cross-validation is used to assess the variance of the skill with & = 10 folds
@ The CNN was optimized using cross—valldatlon tunmg hyperparameters

Possible field inputs in stacked
architecture which works better
for heatwave classification

@ sy has long-term, while zg has short-term information
0.5
—f= su

i\ ~F- Zgism

A\, —F- tw; Z6; sm
041 %

\\{\

0.3 1 \\
0.21 \}\\
0.14
0.0 — T T T T T

0 5 15 20 25 30

T (days)
[13] G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)
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Learning regional correlations vs data length
@ We present the plots of NLS vs lead time time 7

@ Having less data, some global teleconnections not represented well [14]
@ In reanalysis only the data from 1950 to present is available
0.5
=%~ tw; Zc; Sm: 800yrs
=%~ tw;za; sm:800yrs
—f:- tw; Zg; sm: 100yrs
041 % —F= twi za; Sm:100yrs
%
\\\\\\ trained on 800 years
0.3 1 \
0.2 1
0.1
0.0 trained on 100 years
T o 5 10 15 20 25 30
T (days)
za, North Atlantic NLS data reduction zG North Hemisphere

[14]  G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)
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Smoothness of the committor & transfer learning

@ g = q(7) is expected to be a smoothly increase closer to the heat wave
@ This property is epected to play a role in rare event algorithm
@ We achieve this by transfer learning applied to successive 7 [1%]

training performed:
—e— with transfer learning
—&— without transfer learning

Probability
o
IS

Machine Learning
m/ it .
sampling function 0.1
\ Rare Event Algorithm 6 é 1‘1 fls é lb 1’2 1‘4
(Committor function) .
Training pipeline Gtrg zi.sm VS transfer learning

[15]  G. Miloshevich et al., Phys. Rev. Fluids (Apr. 2023)

George Miloshevich (LSCE) gmiloshe®@Isce.ipsl.fr georgemilosh.github.io 10 /20




Stochastic Weather Generator a.k.a. Analog Markov chain

Analogs are sought using X, = argmin {d (x, X,,)} (5)
{Xn}

Analog method

@ SWG is used often to estimate the probability of circulation models
@ Problem (1): how to combine different vars in Euclidean d? Global (G) vs Local (L)
@ Problem (2): in big models: curse of high dimensionality (z¢)
1
dim(2) 5 2
1 2 1 2
> (aZL) + = (aT]) + = (as1)
oy dim(Zg) 4 oy o

[15] P. Yiou et al., https://hal.archives-ouvertes.fr/hal-03921111 (Jan. 2023)
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Alternative solution: Variational Autoencoder

* N . l N

Input Encoder Latent Decoder Output

Space
MNIST latent space Schematics of a (variational) autoencoder
(2] x) = px [ 2)p(2) p(2) = N(0,1)
J p(x [w)p(u)du p(x[2) = N(f(z2),cl)

p(z|x) ~q:(2) = N(g(x), h(x))

B 2
R I G e R TATNENIE)
(f.g,h)eFxGxH ¢
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Stochastic Weather Generator vs CNN

@ Variational AutoEncoder (VAE) reduces dimension
@ We SWG to the latent space of VAE and optimize

0.45

0.40 1

0.35 1

0.30 1

0.20 1

0.15 1

0.10 1

0.05 1

0.00

10000 trajectories per validation day are launched
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Markov Chain (dimz = 16), CNN

[15]

NLS
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G. Miloshevich et al., In preparation (2022)
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© Data-driven extreme event sampling
@ Return time plots
@ Teleconnection patterns
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Return times of long time series generated by SWG (@) = 1)

Synthetic for T = 6
e« Control forT =6
3| Synthetic for T = 15 shades: runs of SWG RILILE R
¢ Control for T =15

Synthetic for T = 30

Control for T = 30
64 Synthetic for T = 60
« Control for T = 60

41 T=6days
mean +/- std

points: long control run

temperature anomaly threshold a, (K)

0
modified block maximum estimator:
o 1
Length of training 90 years r=
A (domain of analogs) log [1 - rank(a) ]
-4 4 < o approximates simple formula:
r = 1/rank(a)
10-1 10° 10t 102 10° 10°

return time 7 (year)

George Miloshevich (LSCE) gmiloshe®@Isce.ipsl.fr georgemilosh.github.io 14 /20



Return times of long time series generated by SWG (aq = 50)
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return time 7 (year)
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Generating synthetic SWG teleconnections

90 years extreme Control run composite SWG composite trained on 90 yrs
(A(r =0) = 4.5K) (A(r=0) = 4.5K) (A(r =0) = 4.5K), g = 50

SWG composite trained on 90 yrs
A(t=0) >4.5K), g =1
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@ Intra-model comparisons
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Plasim/CESM/ERAS teleconnections (Scandinavian heatwave)

Plasim rare event!!0] CESM compositell] ERA5 July 2018

[16] F. Ragone et al., Proceedings of the National Academy of Sciences (2018)

[17] G. Miloshevich et al., “Drivers of midlatitude extreme heat waves revealed by analogues and
machine learning”, in Egu general assembly conference abstracts, EGU General Assembly Conference
Abstracts (Apr. 2021), EGU21-15642
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Hayashi spectra
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A composite of 10 most intense heatwaves

France T14 ts zg500, r = 10.0, day: -30.0
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1000 year long
PlaSim (Planet
Simulator)

No daily cycle:
stronger
land-atmosphere
coupling

The maps are
conditioned to 10
most extreme
heatwaves

The CNN will be
trained on 8000 years
of PlaSim simulation
with daily cycle
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© Future prospects
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Concluding remarks

@ Summary:
e Intra-model spatio-temporal correlations of heatwaves reveal robust teleconnections
e Probabilistic prediction occurs in the regime of lack of data requiring long datasets
e How fields are encoded in the CNN or SWG affects the skill significantly
e SWG sampling of extreme heatwaves validated on a very long GCM run

@ Possible future steps:
o Improve sampling/prediction applying rare event algorithms to high res models
e Improve prediction of extreme events using transfer learning: across datasets
e Study other extremes and Use explainable Al to reveal the precursors
o Use causal inference and/or physical losses/architectures, e.g. GNNs

@ Thank you for your attention! [5]
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