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Introduction

Motivation for extending MHD

Attention in recent times focused on plasma turbulence at small scales

The examples are the Earth‘s magnetosphere and the solar wind

We investigate direction of cascades

MHD, known to have inverse cascade [1]

IC linked to the dynamo mechanism [2]

What are the effects of electron inertia?

Electron inertia relevant in collisionless
reconnection

[1] U. Frisch et al., “Possibility of an inverse cascade of magnetic helicity in magnetohy-
drodynamic turbulence”, Journal of Fluid Mechanics 68, 769–778 (1975)
[2] A. Brandenburg, “The Inverse Cascade and Nonlinear Alpha-Effect in Simulations of
Isotropic Helical Hydromagnetic Turbulence”, Astrophysical Journal 550, 824–840 (2001)
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Introduction

Electron inertia in 2D Extended MHD (XMHD)

We consider a model that adds a scale to reduced MHD

The scales: de - electron skin depth

We adopt Alfvénic units normalized to a typical length scale L.

For simplicity we assume incompressible, 2D scenario:

d2
e = c2/(ω2

peL2)

B(x, y, t) = B0 ẑ + ∇ψ(x, y, t) × ẑ V⊥(x, y, t) = −∇φ(x, y, t) × ẑ (1)

Dynamics can be described by
∂ψ?

∂t
= −[φ, ψ?] and

∂ω

∂t
= −[φ, ω] − [∇2ψ, ψ?], (2)

In this case we only have two quadratic Casimir Invariants[3].

G =
∫

d2x ωψ?, F =
1

2

∫
d2x (ψ?)2 (3)

ω := ∇2φ

ψ? := ψ − d2
e∇

2ψ [φ, ω] := ẑ · ∇φ × ∇ω

[3] T. J. Schep et al., “Generalized twofluid theory of nonlinear magnetic structures”,
Physics of Plasmas 1, 2843–2852 (1994)
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B(x, y, t) = B0 ẑ + ∇ψ(x, y, t) × ẑ V⊥(x, y, t) = −∇φ(x, y, t) × ẑ (1)
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Dynamics can be described by
∂ψ?

∂t
= −[φ, ψ?] and

∂ω

∂t
= −[φ, ω] − [∇2ψ, ψ?], (2)

In this case we only have two quadratic Casimir Invariants[3].

G =
∫

d2x ωψ?, F =
1

2

∫
d2x (ψ?)2 (3)

ω := ∇2φ

ψ? := ψ − d2
e∇

2ψ [φ, ω] := ẑ · ∇φ × ∇ω
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Results from analyzing 2D XMHD model

Absolute equilibrium states (AES)

Driving Range Inertial Range Dissipative Range

k

Figure: Schematics of the R-K Direct Cascade (DC) from large to small scales.

The cascade direction can be determined from the AES the
turbulence would relax to, if not for the input of energy [4]

P = Z−1 exp[−αH − βF − γG]

The approach has been invoked in HD [5] and MHD [6] turbulence

Probability Distribution

Partition Function

Lagrange multiplier

Integral of Motion

[4] D. Biskamp, Magnetohydrodynamic Turbulence, (July 2003), p. 310

[5] R. H. Kraichnan, “Inertial Ranges in Two-Dimensional Turbulence”, Physics of Fluids
10, 1417–1423 (1967)
[6] U. Frisch et al., “Possibility of an inverse cascade of magnetic helicity in magnetohy-
drodynamic turbulence”, Journal of Fluid Mechanics 68, 769–778 (1975)
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Results from analyzing 2D XMHD model

Spectral scaling of helicity across the scales

Performing Fourier expansion, e.g. ψ?(x) =
∑

k ψ
?
k

eik ·x for Casimirs:

F :=
1

2

∑
k

|ψ?k |
2, H =

1

2

∑
k

(
|ωk |

2

k2
+

k2 |ψ?
k
|2

1 + k2d2
e

)
, . . .

We seek equilibrium states given by P = Z−1 exp(−αH − βF − γG) ⇒

〈F(k)〉 =
( αk2

1 + k2d2
e

+ β
)−1

(4)

〈G〉 = 0⇒ γ = 0 and consider the MHD limit pertaining to α > 0[7].

MHD limit: kde � 1⇒ 2πk 〈F〉 ≈ O
(
k−1

)
, 2πk 〈H〉 ≈ O(k)

XMHD limit: kde � 1⇒ 2πk 〈F〉 ≈ O(k+1), 2πk 〈H〉 ≈ O(k)

[7] D. Fyfe et al., “Magnetic dynamo action in two-dimensional turbulent magneto-
hydrodynamics”, Journal of Plasma Physics 17, 317–335 (1977)
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, 2πk 〈H〉 ≈ O(k)

XMHD limit: kde � 1⇒ 2πk 〈F〉 ≈ O(k+1), 2πk 〈H〉 ≈ O(k)

[7] D. Fyfe et al., “Magnetic dynamo action in two-dimensional turbulent magneto-
hydrodynamics”, Journal of Plasma Physics 17, 317–335 (1977)
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Results from analyzing 2D XMHD model

Cascade Reversal at the electron skin depth

The following plots represent generic situation in two regimes:

G/H = -0.05
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Figure: The parameters used here are α = 10, β = 1 and γ = {0,−.75, 1} is varied so that
different values of G are obtained (color-coded).

We predict a cascade reversal of F at the electron skin depth [8]

[8] G Miloshevich et al., “Direction of cascades in a magnetofluid model with electron
skin depth and ion sound larmor radius scales”, version 1, (2018)
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Comparison with numerics

Performing pseudospectral simulations

The problem with AES is that they ignore the effects of dissipation

Moreover turbulence is far from equilibrium

Thus we test the propositions with numerical simulations

The pseudospectral code due to Pablo Mininni[9]is modified

This code has been upgraded to take de into account

∂ψ?

∂t
+ u · ∇ψ? = η+∆nψ? + η−∆−mψ? + φψ, (5)

∂ω

∂t
+ u · ∇ω = b? · ∇ j + ν+∆nω + ν−∆−mω + φω, (6)

b := ∇ × (ẑψ)

hyperresistivity

random stirring

hypoviscosity

[9] D. O. Gomez et al., “Parallel simulations in turbulent mhd”, Physica Scripta 2005,
123 (2005)
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Comparison with numerics

Direct Numerical Simulations: Fluxes

The source de is varied in the simulations and fluxes plotted

Energy Injection Scale

(a) Total Energy H

Helicity Injection

(b) Remnant Helicity F

Figure: Fluxes normalized to the total dissipation in the stationary regime.

Energy and Helicity have Cascade Reversal.

When k f < d−1e the system behaves like MHD

When k f > d−1e the cascade reversal occurs
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Comparison with numerics

Direct Numerical Simulations: Hypodissipation

Parameter de is varied in the simulations and fluxes plotted

Critical Transition

(a) Total Energy H

Critical Transition

(b) Remnant Helicity F

Figure: E− Hypo-dissipation (measure of inverse cascade), normalized to the total
dissipation E := E+ + E− for 512 × 512 and 1024 × 1024 simulations (legend).

As resolution is increased there are hints of critical behavior

This type of transition has been observed in 2D→ 3D fluids[10].

[10] S. J. Benavides and A. Alexakis, “Critical transitions in thin layer turbulence”, Journal
of Fluid Mechanics 822, 364385 (2017)
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Conclusions and Future Work

Summing up

We studied AES taking microscales electron inertia into account.

We predicted cascade reversal on short scales due to de[11]

Numerics demonstrate this, but Energy dual cascades.

Models 2D Analytics 2D Numerics 3D XMHD

Energy Forward Cascade Dual Forward Cascade

Helicity Reversal Reversal Reversal

The lack of IC in 3DXMHD at k ≤ d−1e may influence dynamo [12]

[11] G. Miloshevich et al., “On the structure and statistical theory of turbulence of ex-
tended magnetohydrodynamics”, New Journal of Physics 19, 015007, 015007 (2017)
[12] A. Alexakis et al., “On the inverse cascade of magnetic helicity”, The Astrophysical
Journal 640, 335 (2006)
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Conclusions and Future Work

Future work

Run more numerics including the effects of ion sound Larmor radius

Explaining the critical nature of the transition
Applications to turbulent collisionless reconnection
New Hamiltonian Relativistic XMHD may allow us to seek Casimirs[13]

Thus the turbulent relativistic XMHD cascades can be investigated
We hope the astrophysics/plasma community will find our work useful

Figure: Artist’s illustration of a GRB occurring in a star-forming region. Energy is
beamed into two narrow jets.

[13] Y. Kawazura et al., “Action principles for relativistic extended magnetohydrodynam-
ics: A unified theory of magnetofluid models”, Physics of Plasmas 24, 022103, 022103
(2017)
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