Covariant Hamiltonian theory of extended MHD and applications to collisionless reconnection
M. Lingam * P. J. Morrison *

nstitute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

*IFS

Introduction

» [n astrophysical and other applications, plasma is often in a collisionless state, where
resistive /viscous effects are not dominating on the time/spatial scales of interest

» XMHD is thought to be important for the formation of relativistic jets from active
galactic nuclei, micro-quasars, and gamma-ray bursts [1]
Extended MHD (XMHD) is formally 1-fluid model endowed with 2-fluid effects:
electron inertia and Hall drift described by IMHD and HMHD limits respectively.
These mutually exclusive effects were unified in a covariant Hamiltonian model [2].
Eulerian action principle (AP) for relativistic XMHD is formulated so that
constrained variations are generated by a degenerate Poisson bracket.
For the first time, the Hamiltonian formulation of relativistic HMHD with electron
thermal inertia is introduced [2]
Relativistic HMHD (RHMHD) allows the violation of the frozen-in magnetic flux
condition via an electron thermal inertia effect [2]
Energy and helicity cascades are studied in non-relativistic 3D XMHD turbulence
Study addresses recent interest in sub-electron scales that have become observable.

Advantages of Hamiltonian
methods include:

Systematic means for constructing equilibria, e.g. Beltrami flows.

Clear derivation of reduced models avoiding introduction of
spurious dissipation.

Extraction of invariants such us helicity that plays a major role in
this study.

Understanding of how collisionless reconnection operates
Natural means of arriving at weak turbulence theories.

Construction of numerical integrators that automatically conserve
invariants [4].
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Limit to relativistic Hall MHD

Defining electron to ion mass ratio u := m./m; — 0. Applying following normalization:
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- We substitute this into (2) and get HMHD bracket that generates equations:
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The terms including h. must not be ignored when h. > m.c? [2].

Relativistic Collisionless Reconnection

In IMHD, electron inertia leads to the violation of the frozen-in magnetic flux.

This effect was suggested as a mechanism for collisionless magnetic reconnection [5]
However, nonrelativistic HMHD does satisfy the frozen-in magnetic flux condition

In RHMHD with ¢ — 0 limit electron temperature may still be large enough to allow
the violation of the frozen in condition and thus reconnection.

In [6] the relativistic e—p plasma with the assumption Ah = 0 was considered.

In HMHD, however, [2] Ah = 0 assumption removes the aforementioned mechanism.
The reconnection scale is expected to be § ~ \/h.d:, consistent with the e-p [6]
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Figure: Artist’s illustration of one model of the
bright gamma-ray burst GRB 080319B

Constrained Least Action Principle
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Introducing the action $ = /

+

Ah h

where A* = A" + ?u + n—ezJ” and gen. momentum mw™ := nhu” + (Ah/e)J”

with enthalpies defined as h := hy + h_, Ah :== (m_/m)h. — (m./m)h_, and h' :=
(m?/m?)h, + (m*/m?)h_. Starting from canonical Clebsch potentials
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with momenta and coordinates entering the Poisson bracket. The least AP (65 = 0) is
equivalent to a bracket AP, i.e., {F|z], S} = 0 where F|z] is an arbitrary functional of
Clebsch potentials. We affect coordinate change to z = (n, 0., m*”, A*”) leading to
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Figure: Geometry for Sweet-Parker reconnection
model. Reconnection occurs in the blue layer and
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- The corresponding covariant noncanonical bracket for relativistic XMHD
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Table: Induction equation for nonrelativistic and relativistic (R) models. ~ depends on the scale length 9.

Upon rearranging the action (1) and applying relevant approximations for v < ¢
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Performing 3+1 decomposition F = /(5(X0 —x"Y Z[n, oy, m', A dx’ =
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Seeking Casimirs:
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where AL := myc/e. In addition when
barotropic condition is violated we obtain
the family (with the condition f,_ = 0)

3D Turbulence in nonrelativistic extended MHD
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Figure: Schematics of a standard Richardson-Kolmogorov direct cascade. Energy is injected in low k, for e.g. via large scale
stirring, cascades (flows) through the inertial range and dissipates at small scales (large k).

- Symmetric two—point correlations (taken at x’ and x) of generalized helicities
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helicity flux transfer rate damping
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More symmetry than in HMHD, where C_ has inverse and C, has both cascades [7].
To determine direction of cascading we investigate absolute equilibrium states [3].
Turbulence would relax into these states if not for the continual input of energy.

o establish a bridge between MHD [8] and XMHD results we introduce Casimirs:
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Phase space probability density 22 = Z texp[—aH — BHy — YH] (1)
The resulting states are plotted, for HMHD set d. = 0, IMHD - d; = 0;
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Figure: Absolute equilibria states of spectral quantities, e.g. Ep := 4wk?(Hpy)« and (H) := [ E dk. Parameters a = 10,
B =5 and « is varied. (a) The HMHD regime, d; = 0.1. (b) IMHD magnetic helicity. (c) IMHD cross-helicity with d. = 0.1.

nverse cascade is predicted only for magnetic helicity in HMHD range if He < H.
MHD range is characterized by direct cascades for energy, and both helicities.
MHD model differs from [9] where direct cascades were obtained for electron MHD.

Short Summary

We described APs for relativistic XMHD using noncanonical covariant Poisson bracket.
In addition we formulated relativistic HMHD, obtained by taking a limit of the AP for
XMHD. We observed that while nonrelativistic HMHD does not have a direct mechanism
for collisionless reconnection, relativistic HMHD does allow the violation of the frozen-
in magnetic flux condition via the electron thermal inertia effect. We estimated the
resulting reconnection scale. Next we studied some general properties of non-relativistic
XMHD turbulence. We expect that the (generalized) magnetic helicity undergoes inverse
cascade up to a certain length scale (for a given choice of the free parameters), and then
undergoes a cascade reversal. When electron inertia effects are taken to be dominant
over the Hall term (IMHD regime operating on shorter sub-electron scales) we find that
energy equipartition that was lost in HMHD is recovered.
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