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Introduction

I In astrophysical and other applications, plasma is often in a collisionless state, where
resistive/viscous effects are not dominating on the time/spatial scales of interest

I XMHD is thought to be important for the formation of relativistic jets from active
galactic nuclei, micro-quasars, and gamma-ray bursts [1]

I Extended MHD (XMHD) is formally 1-fluid model endowed with 2-fluid effects:
electron inertia and Hall drift described by IMHD and HMHD limits respectively.

I These mutually exclusive effects were unified in a covariant Hamiltonian model [2].
I Eulerian action principle (AP) for relativistic XMHD is formulated so that

constrained variations are generated by a degenerate Poisson bracket.
I For the first time, the Hamiltonian formulation of relativistic HMHD with electron

thermal inertia is introduced [2]
I Relativistic HMHD (RHMHD) allows the violation of the frozen-in magnetic flux

condition via an electron thermal inertia effect [2]
I Energy and helicity cascades are studied in non-relativistic 3D XMHD turbulence
I Study addresses recent interest in sub-electron scales that have become observable.

Figure: Artist’s illustration of one model of the
bright gamma-ray burst GRB 080319B

Advantages of Hamiltonian
methods include:
I Systematic means for constructing equilibria, e.g. Beltrami flows.

I Clear derivation of reduced models avoiding introduction of
spurious dissipation.

I Extraction of invariants such us helicity that plays a major role in
this study.

I Understanding of how collisionless reconnection operates

I Natural means of arriving at weak turbulence theories.

I Construction of numerical integrators that automatically conserve
invariants [4].

Constrained Least Action Principle

Introducing the action S =
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with momenta and coordinates entering the Poisson bracket. The least AP (δS = 0) is
equivalent to a bracket AP, i.e., {F [z ], S} = 0 where F [z ] is an arbitrary functional of
Clebsch potentials. We affect coordinate change to z̄ = (n, σ±,m
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The corresponding covariant noncanonical bracket for relativistic XMHD

•
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Limit to relativistic Hall MHD

Defining electron to ion mass ratio µ := me/mi → 0. Applying following normalization:
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We substitute this into (2) and get HMHD bracket that generates equations:

•

The terms including he must not be ignored when he � mec
2 [2].

Relativistic Collisionless Reconnection

I In IMHD, electron inertia leads to the violation of the frozen-in magnetic flux.
I This effect was suggested as a mechanism for collisionless magnetic reconnection [5]
I However, nonrelativistic HMHD does satisfy the frozen-in magnetic flux condition
I In RHMHD with µ→ 0 limit electron temperature may still be large enough to allow

the violation of the frozen in condition and thus reconnection.
I In [6] the relativistic e–p plasma with the assumption ∆h = 0 was considered.
I In HMHD, however, [2] ∆h = 0 assumption removes the aforementioned mechanism.
I The reconnection scale is expected to be δ ∼

√
hedi , consistent with the e-p [6]

Models frozen-in field

(R)MHD B

HMHD B

IMHD B +∇×
(
d 2
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)
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i heJ/n
)

Table: Induction equation for nonrelativistic and relativistic (R) models.
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Figure: Geometry for Sweet-Parker reconnection
model. Reconnection occurs in the blue layer and
depends on the scale length δ.

Nonrelativistic XMHD – 3+1 decomposition

Upon rearranging the action (1) and applying relevant approximations for v � c
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Performing 3+1 decomposition F =
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Figure: Foliation of phase space Z by Casimirs C in finite
dimensions. Observe how dynamical system evolves (z = z(t))
on individual Casimir leaves. But field theories like XMHD are
uncountably infinite dimensional!

Seeking Casimirs: ∀F : 0 = {F , C} ⇒
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barotropic condition is violated we obtain
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3D Turbulence in nonrelativistic extended MHD
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Figure: Schematics of a standard Richardson-Kolmogorov direct cascade. Energy is injected in low k , for e.g. via large scale
stirring, cascades (flows) through the inertial range and dissipates at small scales (large k).
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helicity flux transfer rate
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Symmetric two-point correlations (taken at x′ and x) of generalized helicities

•

I More symmetry than in HMHD, where C− has inverse and C+ has both cascades [7].
I To determine direction of cascading we investigate absolute equilibrium states [3].
I Turbulence would relax into these states if not for the continual input of energy.
I To establish a bridge between MHD [8] and XMHD results we introduce Casimirs:
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cross-helicity HC :=
1

2

C+ − C−
κ+ − κ−

=

∫
d 3x (V ·B∗ +

di
2
V · ∇ ×V ), (10)

Phase space probability density P = Z−1 exp[−αH − βHM − γHC ] (11)

The resulting states are plotted, for HMHD set de = 0, IMHD - di = 0;
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(b) IMHD magnetic helicity
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(c) IMHD cross-helicity

Figure: Absolute equilibria states of spectral quantities, e.g. EM := 4πk2〈HM〉k and 〈H〉 :=
∫
E dk . Parameters α = 10,

β = 5 and γ is varied. (a) The HMHD regime, di = 0.1. (b) IMHD magnetic helicity. (c) IMHD cross-helicity with de = 0.1.

I Inverse cascade is predicted only for magnetic helicity in HMHD range if HC � H .
I IMHD range is characterized by direct cascades for energy, and both helicities.
I IMHD model differs from [9] where direct cascades were obtained for electron MHD.

Short Summary

We described APs for relativistic XMHD using noncanonical covariant Poisson bracket.
In addition we formulated relativistic HMHD, obtained by taking a limit of the AP for
XMHD. We observed that while nonrelativistic HMHD does not have a direct mechanism
for collisionless reconnection, relativistic HMHD does allow the violation of the frozen-
in magnetic flux condition via the electron thermal inertia effect. We estimated the
resulting reconnection scale. Next we studied some general properties of non-relativistic
XMHD turbulence. We expect that the (generalized) magnetic helicity undergoes inverse
cascade up to a certain length scale (for a given choice of the free parameters), and then
undergoes a cascade reversal. When electron inertia effects are taken to be dominant
over the Hall term (IMHD regime operating on shorter sub-electron scales) we find that
energy equipartition that was lost in HMHD is recovered.
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