

 \bigcirc

LSCE

Stochastic weather generator and deep learning approach for predicting and sampling extreme European heatwaves George Miloshevich, Dario Lucente, Pascal Yiou and Freddy Bouchet

LSCE, UMR 8212 CEA-CNRS-UVSQ, IPSL, Orme des Merisiers, Gif-sur-Yvette, 91191, France

(4)

(5)

Context and Goals

Extreme events are rare but impactful
Sampling heatwaves with GCMs costly

- Training on imbalanced datasets is hard
- We benchmark probabilistic prediction
- We consider dimensionality reduction for efficient analogs computation
- We generate surrogate extremes and validate them with a long control run

Stochastic Weather Generator

Euclidean distance analogs

• Markov chain \rightarrow surrogate trajectory [3] $P(X(t+\delta t)|X(s)) \propto \begin{cases} 1, & \text{if } X(t) \sim X(s) \\ 0, & \text{otherwise} \end{cases}$ (3) Analogs sought using $X_{n_{\star}} = \underset{\{X_n\}}{\operatorname{argmin}} \left\{ d\left(x, X_n\right) \right\}$ $d^2 = \frac{\left(\Delta T_L^I\right)^2}{\sigma_T^2} + \frac{\left(\Delta S_L^I\right)^2}{\sigma_S^2} + \alpha \sum_{i=1}^{\dim(Z)_G} \frac{\left(\Delta Z_G^I\right)^2}{\sigma_T^2 \dim(Z_G)}$

Data pipeline for learning probabilistic forecasting: CNN vs SWG

```
Convolutional Neural Network
```

Heat Wave (HW) definition

• HW: $1 - \overline{p} := 95$ th percentile of time averaged running mean 2 meter temperature anomalies:

 $A_{T}(t) = \frac{1}{T} \int_{t}^{t+T} \frac{1}{|\mathcal{D}|} \int_{D} \left(T_{2m} - \mathbb{E} \left(T_{2m} \right) \right) \, \mathrm{d}\vec{r} \mathrm{d}u$ (1) **Data: 8000 years of <u>Plasim</u>**

Intermediate complexity climate modelconfiguration: fixed ocean, repeating SST

Return times formula

• Sort summer extremes $\{a_m\}_{1 \leq m \leq M}$

Figure: Possible field inputs $X = \{t_M, z_G, s_M\}$ in stacked architecture which works better for CNN

Forecasting heatwaves, benchmarking: CNN, SWG, VAE+SWG

1

(2)

SWG return times vs control

• Synthetic trajectories *(shaded lines)* are obtained from 80 years of a reference run

Figure: NLS benchmarks: (left panel) NLS vs au (center panel) NLS vs lpha (right panel) NLS vs number of nearest neighbors

Key Takeaways

For prediction CNN performs better than SWG. SWG estimates extreme return times and teleconnections

Validating extreme surrogate 500 hPa geopotential teleconnection patterns

• Validation achieved comparing synthetic to 7200 years-long control run *(dots)*

Contact Information

- Website: georgemilosh.github.ioEmail: gmiloshe@lsce.ipsl.fr
- Scan for GitHub link (code repo):

(b) 7200 years control run

(c) Composite from SWG run

Figure: Composite maps for A(t) > 4.5K threshold France heatwaves at $\tau = 0$. The reference run has 80 years.

Conclusions and future work

(a) Single event in the reference run

References

CNN [1] produces better probabilistic forecasts of heatwaves than SWG [1] https://www.cnrs.fr/fr/changements-climatiques-une-meilleure-prediction-des-canicules-grace-lia.
This lack of data [2] indicates the rare event algorithm could be useful
Analogs are computed faster with dimensional reduction
s_L provides long-term prediction skill, z_G - shorter term
SWG samples well extreme return times and teleconnection patterns
CNN [1] https://www.cnrs.fr/fr/changements-climatiques-une-meilleure-prediction-des-canicules-grace-lia.
Miloshevich, B. Cozian, P. Abry, P. Borgnat, and F. Bouchet. Phys. Rev. Fluids, 8:040501, Apr. 2023.
P. Yiou. Geoscientific Model Development, 7(2):531–543,

2014.

• The need to re-train on ECMWF reanalysis (transfer learning)