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Context and Goals
•Extreme events are rare but impactful
•Sampling heatwaves with GCMs costly
•Training on imbalanced datasets is hard
•We benchmark probabilistic prediction
•We consider dimensionality reduction for
efficient analogs computation
•We generate surrogate extremes and
validate them with a long control run

Heat Wave (HW) definition

•HW: 1− p := 95th percentile of time
averaged running mean 2 meter
temperature anomalies:
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Data: 8000 years of Plasim

• Intermediate complexity climate model
• configuration: fixed ocean, repeating SST

Return times formula

•Sort summer extremes {am}16m6M

r = 1
log (1 - rank(a)/M)

, (2)

SWG return times vs control

Figure: Return time plot: synthetic vs control

•Synthetic trajectories (shaded lines) are
obtained from 80 years of a reference run
•Validation achieved comparing synthetic to
7200 years-long control run (dots)

Contact Information
•Website: georgemilosh.github.io
•Email: gmiloshe@lsce.ipsl.fr
•Scan for GitHub link (code repo):

Figure: Climate-Learning

Stochastic Weather Generator

•Markov chain → surrogate trajectory [3]

P (X(t + δt)|X(s)) ∝


1, if X(t) ∼ X(s)
0, otherwise

(3)

Euclidean distance analogs

Analogs sought using Xn? = argmin
{Xn}

{d (x,Xn)} (4)
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Data pipeline for learning probabilistic forecasting: CNN vs SWG
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Reconstruction of zG, Variational AutoEncoder

P̂ (AT (t) > a|X = x, τ ) (6)
committor function: probability of an event

•

•Suitable for rare events:

NLS := 1−
E
{∑1

k=0 yk log
[
P̂k(x, τ )

]}
∑
i pi log pi

(7)

Normalized Logarithmic Score (NLS)

•

Figure: Possible field inputs X = {tM , zG, sM} in stacked architecture which works better for CNN

Forecasting heatwaves, benchmarking: CNN, SWG, VAE+SWG

Figure: NLS benchmarks: (left panel) NLS vs τ (center panel) NLS vs α (right panel) NLS vs number of nearest neighbors

Key Takeaways

For prediction CNN performs better than SWG. SWG estimates extreme return times and teleconnections

Validating extreme surrogate 500 hPa geopotential teleconnection patterns

(a) Single event in the reference run (b) 7200 years control run (c) Composite from SWG run

Figure: Composite maps for A(t) > 4.5K threshold France heatwaves at τ = 0. The reference run has 80 years.

Conclusions and future work

•CNN [1] produces better probabilistic forecasts of heatwaves than SWG
•The prediction skill improves on order of hundreds of years [2]
•This lack of data [2] indicates the rare event algorithm could be useful
•Analogs are computed faster with dimensional reduction
• sL provides long-term prediction skill, zG - shorter term
•SWG samples well extreme return times and teleconnection patterns
•The need to re-train on ECMWF reanalysis (transfer learning)
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