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Abstract.

We investigate the existence and propagation of solitons in a long-range extension of

the quartic Fermi-Pasta-Ulam (FPU) chain of anharmonic oscillators. The coupling

in the linear term decays as a power-law with an exponent 1 < α ≤ 3. We obtain

an analytic perturbative expression of traveling envelope solitons by introducing a Non

Linear Schrödinger (NLS) equation for the slowly varying amplitude of short wavelength

modes. Due to the non analytic properties of the dispersion relation, it is crucial to

develop the theory using discrete difference operators. Those properties are also the

ultimate reason why kink-solitons may exist but are unstable, at variance with the

short-range FPU model. We successfully compare these approximate analytic results

with numerical simulations.

PACS numbers: 05.45.Yv, 05.45.-a

1. Introduction

The study of the equipartition process in the Fermi-Pasta-Ulam-Tsingou (FPU) model

of nonlinearly coupled oscillators [1, 2, 3] has led to important discoveries in both

statistical mechanics [4, 5] and nonlinear science [6]. At the same time, nonlinear

oscillator chains serve as the simplest prototypes for complex condensed matter systems

[7, 8] and biophysical phenomena [9, 10]. In particular, the study of FPU chains

has historically motivated the discovery of solitons [11, 12]. Further developments,

namely nonintegrable (Klein-Gordon [13] and Frenkel-Kontorova [14]) and integrable

Toda [15] chains helped much in understanding the interplay between integrability and

chaos [1]. These concepts have been applied to describe transport properties in electric
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transmission lines [16] and even in quantum systems, such as Josephson junction parallel

arrays and lattices [17, 18]. In most cases, the analysis was restricted to one-dimensional

(d = 1) lattices where oscillators interact only with nearest neighbors, i.e. to short-range

interactions.

In recent years there has been a growing interest in systems with long-range

interactions [19, 20]. In such systems, either the two-body potential or the coupling

at separation r decays with a power-law r−α. When the power α is less than the

dimension of the embedding space d, these systems violate additivity, a basic feature

of thermodynamics, leading to unusual properties like ensemble inequivalence, broken

ergodicity, quasistationary states.

Long-range coupled oscillator models have been previously introduced to cope

with dipolar interactions in mechanistic DNA models [21]. They describe also

ferroelectric [22] and magnetic [23] systems, where the long-range coupling is provided

again by dipolar forces. Other candidates for application are cold gases: dipolar

bosons [24, 25], Rydberg atoms [26], atomic ions [27, 28]. Moreover, one can

mention optical wave turbulence [29] and scale-free avalanche dynamics [30], where

such long-range couplings appear. The extension of the FPU problem to include

long-range couplings is rarely considered [31, 32, 33] and attention has been mainly

focused on deriving the continuous counterpart of the discrete long range models [32],

on considering thermalization properties caused by the long-range character of the

interactions [33, 34], or on finding conditions for the existence of standing localized

solutions like breathers [31].

In this Letter, we consider a generalization of the FPU model by introducing a

long-range coupling in the linear term decaying with the power α, while keeping the

nonlinear term short-range. We have chosen the power in the range 1 < α ≤ 3, where

we obtain qualitatively similar results. Below α = 1 the energy diverges and above

α = 3 the systems becomes short-range. Dipolar systems correspond to the power

α = 3, while the power α = 2 has been considered for crack front propagation along

disordered weak planes between solid blocks [30] and contact lines of liquid spreading

on solid surfaces [35].

2. Methods

The Hamiltonian of the model reads

H =
N∑

j=−N

p2
j

2
+

1

2

N∑
j>`=1

(uj − u`)2

|j − `|α
+

N∑
`=1

(un+1 − un)4

4
(1)

and the corresponding equations of motion are

ü` =
N∑

j=1j 6=`

uj − u`
|j − `|α

+ (u`+1 − u`)3 + (u`+1 − u`)3 (2)

Assuming plane wave solutions of the form

u` = (A/2)ei(q`−Ωt) + c.c. (3)
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and substituting them into the equations of motion, we obtain the nonlinear dispersion

relation in Rotating Wave Approximation (RWA) for the normal mode frequencies Ωn

and wave numbers qn

(Ωn)2 = 2
N∑
m=1

1− cos(qnm)

mα
+ 3|A|2(1− cos qn)2. (4)

This dispersion relation in the linear limit A → 0 is shown in the main plot of

Fig. 1. The insets show its first derivative vg (group velocity) and second derivative Ω′′.

Derivatives are performed by discrete differences for a sufficiently large finite value of N

with step size h = 2π/N . In all calculations below we will the use power-law exponent

α = 2. Both the group velocity vg and Ω′′ diverge when N →∞ in the zero wavenumber

limit qn → 0.

Let us concentrate first our attention on the solitons that appear at small

wavelength. As usual [36], we represent the solution as an expansion in normal modes

u` =
1

2

[
N∑
n=1

Cne
i(qn`−Ωnt) + c.c.

]
. (5)

Focusing on the carrier wavenumber q0 of the wave packet and the associated frequency

Ω0 in the limit A → 0, i.e. Ω0 ≡ Ω(q0, A = 0), and defining Ωn = Ω0 + ε2δΩn,

qn = q0 + εδqn, we get an expression of the form of Eq. (3)

u` = ε
[
A(ζ, τ)ei(q

0`−Ω0t) + c.c.
]
. (6)

where the envelope function A(ζ, τ), is a slowly varying function in space ζ = ε` and

time τ = ε2t. Its expression is

A(ζ, τ) =
∑
n

Cne
i(δqnζ−δΩnτ). (7)

Taking the time derivative of formula (refA) we get

∂

∂τ
A(ζ, τ) =

∑
n

Cne
i(δqnζ−δΩnτ) [−iδΩn(qn)] . (8)

Expanding now ε2δΩn(qn) = Ωn(qn) − Ω0(q0) around the value q0
n and A = 0 we get

approximately

δΩn(qn) =
∞∑
s=1

(εδqn)s

ε2s!

∆
(s)
h [Ω0(q0)]

hs
+ |A|2∂Ωn(q0)

∂(|A|2)

∣∣∣
A=0

(9)

where ∆
(s)
h is the difference operator of order s with step size h = 2π/N in the

limit A = 0. We will restrict ourselves to difference operators of first and second or-

der: ∆
(1)
h [Ω0] ≡ Ω0(q0 + h)− Ω0(q0) and ∆

(2)
h [Ω0] ≡ Ω0(q0 + h) + Ω0(q0 − h)− 2Ω0(q0).

Then, substituting (reftay) into (refdA) and taking into account the definition (7), we

get the following nonlinear equation for the amplitude A(ζ, τ)

i

(
∂A

∂τ
+
vg
ε

∂A

∂ζ

)
+

Ω′′

2

∂2A

∂ζ2
−R|A|2A = 0, (10)
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Figure 1. Main plot: dispersion relation (refdisp) in the linear limit A → 0 for

discretized values of the wavenumber qn = 2πn/N , N = 512. Top inset: the first

discrete derivative of the dispersion vg (group velocity). Lower inset: the second

discrete derivative Ω′′.

where the definitions below have been introduced

vg = ∆
(1)
h

[
Ω0
]
/h, Ω′′ = ∆

(2)
h

[
Ω0
]
/h2, (11)

R = ∂Ωn(q0)/∂(|A|2)
∣∣∣
A=0

= 3(1− cos q0)2/2Ω0.

Now, switching to a comoving reference frame with a rescaled time t and space ξ

where ξ = ε(`− vgt), we get the Non Linear Schrödinger (NLS) equation

i
∂A

∂t
+

Ω′′

2

∂2A

∂ξ2
−R|A|2A = 0 (12)

This equation has the well known one-soliton solution for A, which can be inserted in

expression (refdef) to get

u`(t) =
f cos

[(
Ω0 + 3(1−cos q0)4

4Ω0 f 2
)
t− q0`

]
cosh

[
f(1− cos q0)2

√
3

2Ω0
n|Ω′′|(`− vgt)

] , (13)

where f stands for the soliton amplitude.
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Figure 2. Left panel: Displacement field ul as a function of site number l at times

t=0 (blue) and t=3000 (red) for different carrier wavenumbers: q0 = π/16, π/8 and

π/2 (from top to bottom). Right panel: Space-time evolution of the displacement field

uk represented in color code.

It is noteworthy to mention that the semi-discrete approach [37, 38, 39] based on

the continuous reductive perturbation theory [40] fails in the derivation of the soliton

profile (refsoliton2). In particular, a derivation similar to Ref. [37] leads to the same

NLS equation (12), but with a different dispersion coefficient containing continuous

derivatives Ω′′ = ∂2Ω0/∂q2 instead of difference operators as given in Eq. (11). The

appearance of continuous derivatives causes a divergences of both the group velocity vg
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and Ω′′. Indeed, considering continuous derivatives

∂2Ω0

∂q2
=

1

Ω0

N∑
m=1

cos(qm)

mα−2
− 1

[Ω0]3

(
N∑
m=1

sin(qm)

mα−1

)
, (14)

the first term on the right-hand side is divergent for α = 2. Specifically, it oscillates as

a function of both q and N . In summary, the approach in Refs. [37, 38, 39, 40] does not

lead to the correct expression for the soliton parameters. The correct approach relies

on a discrete wave-packet dynamics [36] and on the use of discrete difference operators,

as done in this Letter.

3. Results

We have performed numerical simulations of the set of equations (reffirst) with periodic

boundary conditions, using solution (13) as an initial condition (t = 0), i.e. we consider

u`(t = 0) as initial displacements and u̇`(t = 0) as initial velocities. In Fig 2 we display

the time-evolution of this initial condition for three different wavenumbers, approaching

q0 = 0 from bottom to top. As predicted by linear theory the group velocity vg increases

when q0 decreases. At the same time, the width of the soliton grows as well and thus

the wave amplitude must increase in order to keep the soliton within the lattice length

limits.

Traveling envelope solitons are robust against perturbations and we do not observe

their destruction on a long time scale, while single carrier mode excitation with the

same amplitude is modulationally unstable. This instability is presented in Fig.3. The

soliton shape (left panel) remains unchanged up to the time t = 104, while the single

mode excitation (right panel) collapses on a much shorter time interval.

One has to mention that the effective nonlinearity parameter in our model is

f
√
R/|Ω′′| and we can therefore increase the wave amplitude f in the small carrier

wavenumber limit without violating the weak nonlinearity restriction. Beyond this weak

nonlinearity limit, traveling envelope solitons become unstable or they are trapped by

the lattice and transform into standing breather solutions [31].

The existence of other weakly nonlinear localized solutions, like kink-solitons, is

limited by the fast increase of the group velocity in the low wavenumber limit. In

fact, low wavenumber excitations, which should in principle generate kink-solitons, are

characterized by drastically different velocities and they cannot form localized wave

packets obeying the Korteweg-de Vries (KdV) or the modified KdV equations [11, 41,

42, 37]. These problems appear as well in the case of the analytic description of envelope

solitons.

However, at strong nonlinearity, kink-soliton solutions with ”magic” wavenumber

2π/3 exist. Extended waves with that particular wavenumber are exact solutions of

model (reffirst). It has been proposed that such exact solutions can acquire a compact

support and maintain their validity as approximate solutions [43, 44]. These truncated
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Figure 3. Left panels: Time evolution of solitonic solution (refsoliton2) in mode space

(top) and in real space (bottom). Right panel: Time evolution of the single mode in

mode space (op) and in real space (bottom). For better visualization only the first 125

modes are displayed, all other modes carry almost zero energy.

wave solutions can be written in terms of relative displacements as follows

u`+1 − u` = ±A
2

[
1 + cos

(
2π

3
`− ωt

)]
(15)

for |2π`/3− ωt| < π and u`+1 − u` = 0 for |2π`/3− ωt| > π, where

ω ≡ Ω(q = 2π/3, A) =
√

(Ω0
N/3)2 + (45/16)A2 (16)

and the supersonic kink is characterized by the group velocity v = 3ω/2π. We have

considered here these approximate analytical kink-antikink solutions (refkink) as initial

conditions. As far as we use periodic boundary conditions, it is impossible to consider

single kink motion: we have thus monitored the dynamics of kink-antikink pairs (see
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Figure 4. Left panel: Displacement pattern with initial kink-antikink

solution (refkink) with amplitude A = 20 at different time: t = 0, t = 50 and t = 500.

Right panel: Color code representation of the evolution of the displacement pattern

in space-time of the same kink-antikink pair. As clearly seen, the kink-antikink pair

survives up to time t = 200 after which the system goes to a chaotic regime.

Fig. 4). As it appears from numerical simulations, although the dynamics follows

approximately the solution (refkink), the kinks are much less robust against the collisions

with perturbative excitations than it happens in the case of envelope solitons. At the

beginning the kink shape remains unchanged, but the kink-antikink motion creates

perturbations in the lattice and those inhomogeneities finally cause the destruction of

the kink solution.

4. Conclusions

Concluding, we have analytically found moving soliton solutions in a long-range version

of the FPU model (reffirst). Those are weakly nonlinear envelope solitons and strongly

nonlinear kink-soliton solutions. Envelope solitons show stable propagation along the

lattice at variance with kink-solitons which collapse on a short time scale. Numerical

simulations confirm the validity of the analytic approximate solutions.
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