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Instabilities and relaxation to equilibrium in long-range oscillator chains
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(4)Laboratoire de Physique de l’ENS Lyon, Université de Lyon, CNRS, 46, allée d’Italie, 69007 Lyon, France

(5) Dipartimento di Fisica e Astronomia and CSDC, Università di Firenze,
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We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-
Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in
mode space is stronger for the long-range FPU model. This allows us to uncover the sporadic nature
of instabilities, i.e., by varying initially the excitation amplitude of the lowest mode, which is the
control parameter, instabilities occur in narrow amplitude intervals. Only for sufficiently large values
of the amplitude, the system enters a permanently unstable regime. These findings also clarify the
long-standing problem of the relaxation to equilibrium in the short-range FPU model. Because of
the weaker localization in mode space of this latter model, the transfer of energy is retarded and
relaxation occurs on a much longer time-scale.

PACS numbers: 63.20.Ry, 63.20.K-, 05.45.-a

The relaxation to equilibrium in nonlinearly coupled
oscillators is still an open problem [1, 2]. Starting
with the pioneering work of Fermi-Pasta-Ulam-Tsingou
(FPU) [3], these studies led to important discoveries
in both statistical mechanics and nonlinear science. In
most cases, the analysis was restricted to one-dimensional
(d = 1) lattices where oscillators interact only with near-
est neighbors, i.e. to short-range interactions. However,
in recent years there has been a growing interest in sys-
tems with long-range interactions [4, 5]. In such systems,
either the two-body potential or the coupling at separa-
tion r decays with a power-law r−α. When the power
α is less than the dimension of the embedding space d,
these systems violate additivity, a basic feature of ther-
modynamics, leading to unusual properties like ensemble
inequivalence, broken ergodicity, quasistationary states.

The extension of the FPU problem to include long-
range couplings is rarely considered [6–8]. Moreover, at-
tention has been focused mainly on finding conditions
for the existence of localized solutions like solitons or
breathers. No one, to the best of our knowledge, has
tackled, in the context of long-range systems, the orig-
inal question posed by FPU on the time-scales for re-
laxation to equilibrium when the energy is fed into the
lowest Fourier mode. This is the subject of this Letter.
Moreover, we here show that the lessons learnt from the
long-range FPU model can be used to clarify key features
of the original short-range model.

Long-range coupled oscillator models have been pre-
viously introduced to cope with dipolar interaction in
mechanistic DNA models [9]. They describe also fer-
roelectric [10] and magnetic [11] systems, where the
long-range coupling is provided again by dipolar forces.
Other candidates for application are cold gases: dipolar
bosons [12, 13], Rydberg atoms [14], atomic ions [15, 16].

Moreover, one can mention optical wave turbulence [17]
and scale-free avalanche dynamics [18], where such long-
range couplings appear.
In this Letter, we consider a generalization of the FPU

model by introducing a long-range coupling in the lin-
ear term, while keeping the nonlinear term short-range.
Choosing the power 1 < α ≤ 3, the results do not depend
much on the specific value. Dipolar systems correspond,
as mentioned, to the power α = 3, while the power α = 2
has been considered for crack front propagation along dis-
ordered weak planes between solid blocks [18] and contact
lines of liquid spreading on solid surfaces [19].

Here, we repeat the FPU experiment by putting the
energy initially in the lowest Fourier mode. As for the
short-range FPU model, an exponential spectrum involv-
ing only odd modes forms on a short-time scale [20, 21].
However, energy localization in Fourier space is much
stronger, as we will comment in the following. By increas-
ing the initial amplitude, a parametric instability sets in
where the energy is transferred to even modes [22–25].

For the long-range FPU this instability has a sporadic

nature, i.e. by increasing the amplitude one observes
instability islands, narrow amplitude intervals where in-
stability sets in. Similar sporadic instabilities (so called
induction phenomenon [26]) have been observed in the
short-range FPU when exciting higher modes. As we will
show below, these instabilities play a much more impor-
tant role in the long-range FPU than in the short-range
one. This is due to the strong localization in mode space,
which is ultimately determined by the non-equidistant
character of the unperturbed frequency spectrum, see
Fig. 1a. This instability drives the long-range system to
energy equipartition on a short time-scale. For the short-
range FPU, the simultaneous presence of sporadicity and
weak localization in mode space, which is due to the
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FIG. 1: a) Unperturbed frequency distribution, Ω0
n

in for-
mula 6, for the short-range FPU α = ∞ (stars) and for the
long-range one with α = 2 (triangles). b)-d) Time evolution
of Fourier mode energies obtained by numerically integrating
Eqs. (3). Initially, only the lowest mode is excited with in-
creasing amplitudes: A = 1.96, A = 1.98 and A = 2 (graphs
b), c) and d), respectively). Warm colors (close to red) in b)-
d) correspond to even modes while cold colors (close to green)
represent odd ones. The number of oscillators in all panels
is fixed to N = 32 and the long-range interaction power is
α = 2.

equidistant character of the frequency spectrum shown in
Fig. 1a, delays the convergence to energy equipartition.
Therefore, the study of these instabilities for long-range
systems clarifies an important aspect of the relaxation to
equilibrium in the traditional short-range FPU model.

Let us consider the following long-range Hamiltonian,
which describes a system of coupled nonlinear oscillators

H =

N
∑

j=1

u̇2
j

2
+

N
∑

j>ℓ=1

Rjℓ
(uj − uℓ)

2

2
+

N
∑

j=1

(uj+1 − uj)
4

4
,

(1)
with displacements uj and velocities u̇j of the N oscil-
lators. Quartic nonlinearity has been chosen so that the
above model applies to the class of systems with inversion
symmetry. We define the algebraically decaying interac-
tion matrix elements of the harmonic term as

Rjℓ =
1

|j − ℓ|
α +

1

(N − |j − ℓ|)
α , (2)

in which 1 < α ≤ 3 is a long-range interaction power.
The lower limit corresponds to a diverging harmonic in-
teraction for infinite N while, beyond the upper limit we
are in the short-range regime [6]. In order to be spe-
cific, we discuss here the case α = 2, but the results of
simulations are similar for all long-range powers [27].

Hamilton’s equations of model (1) are

üℓ =

N
∑

j=1

Rjℓ(uj−uℓ)+(uℓ+1 − uℓ)
3
+(uℓ−1 − uℓ)

3
. (3)

In momentum representation

Qn =
1

N

N
∑

ℓ=1

uℓ e
iqnℓ, (4)

where n is the normal mode number, and qn = 2πn/N ,
one can rewrite (3) in the following form

Q̈n = −
(

Ω0
n

)2
Qn −

N
∑

〈m,r,p〉

Gn
mrpQmQrQp, (5)

where normal mode numbers satisfy the condition m +
r + p − n = 0, N, 2N, ... and 〈m, r, p〉 further restricts
the sum so that each triplet of modes {m, r, p} is present
only once. Gn

mrp = Dmrpωmωrωpωn are mode coupling
constants where ωr ≡ 2 sin(qr/2) and Dmrp stand for the
number of permutations of the set {m, r, p}, while Ω0

n are
unperturbed frequencies of the long-range normal modes

Ω0
n =

√

√

√

√2
N
∑

m=1

1− cos(qnm)

mα
. (6)

These frequencies are plotted in Fig. 1 for both a long-
range and a short-range case. As mentioned above the
spectrum is not equidistant in the long-range case. Origi-
nally, the FPU paradox involved exciting the first Fourier
mode n = 1 and looking for the equipartition of energy
with respect to all other modes. Thus, we consider the
following initial condition

uℓ = A
[

ei(q1ℓ−Ω0

1
t) + c.c.

]

(7)

which implies that energy is carried by normal modes
Q1 = AeiΩ

0

1
t and QN−1 = (Q1)

∗
. In what follows we

will study the evolution and instability of this initial ex-
citation.

First of all, let us note that this mode could be treated,
in the first approximation, as a source field and causes
a nonlinear frequency shift to all normal modes. Indeed,
examining nonlinear terms in (5) for Qn normal mode
evolution containing Gn

n,1,N−1QnQ1QN−1, we conclude
that the expression for renormalized frequencies is

Ωn =
√

(Ω0
n)

2 +Gn
n,1,N−1 |Q1|

2. (8)

In addition, this source mode excites the branch of odd
modes (often referred to as normal mode bush or q-
breather [21, 24, 25]). For instance, the initially absent
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Q3 mode is generated according to the perturbation anal-

ysis of (5) Q̈3 = −
(

Ω0
3

)2
Q3−G3

111 (Q1)
3
giving the exact

solution

Q3 =
G3

111A
3

9Ω2
1 − Ω2

3

[

e3iΩ1t − cos(Ω3t)− i
3Ω1

Ω3
sin(Ω3t)

]

.

(9)
Thus, in addition to the triple source harmonic 3Ω1, Q3

acquires the harmonic pair ±Ω3 as well. In the long-
range case, the perturbation analysis is well justified since
low frequencies Ωj are not equidistant, i.e. the ratio
(3Ω1−Ω3)/Ω1 remains finite even in the N → ∞ limit, in
contrast to the short-range FPU system. This itself guar-
antees the perturbative scaling |Q1| ≫ |Q3| and, as we
will see below, leads to an excellent agreement between
analytical predictions and numerical results. Proceed-
ing further, we can derive perturbatively the expression
for Q5 with harmonics ±Ω5, ±Ω3 + 2Ω1 and 5Ω1, and
then for all odd normal modes which have exponentially
decaying amplitudes with increasing mode number. We
define such a steady distribution set of multicomponent

and multi-frequency odd modes as Q
(a)
r , where (a) indi-

cates different harmonics of the r-th odd mode. Further,
we should discuss how to derive the instability properties
of this group of lowest energy modes.
First of all, we note that the initially excited lowest

mode Q1 alone (when all other modes are not excited) is
parametrically stable in both long and short-range cases:
thus, in order to analyze the instability process, it is nec-
essary to consider the combination of odd modes created
by the initial excitation of the first mode. Following a
parametric instability approach, we consider pair of equa-
tions from the set (5)

Q̈n = − (Ωn)
2
Qn −Gn

mrpQmQ(a)
r Q(b)

p (10)

Q̈m = − (Ωm)
2
Qm −Gm

nrpQn

(

Q(a)
r

)∗ (

Q(b)
p

)∗

,

where we have restricted the sum to mode harmonics
such that the relative frequency

∆ = Ω(a)
r +Ω(b)

p − Ωm − Ωn, (11)

is close to zero. Then, introducing the transformations
Qn = Qne

iΩnt and Qm = Qme−iΩmt, we get

Q̈n + 2iΩnQ̇n = −Gn
mrpQmQ(a)

r Q(b)
p ei∆t (12)

Q̈m − 2iΩmQ̇m = −Gm
nrpQn

(

Q(a)
r

)∗ (

Q(b)
p

)∗

e−i∆t.

The instability takes place when the approximate reso-
nance condition ∆ ≈ 0 holds. We can compute more
precisely this threshold assuming a slow time evolu-
tion in (12) and neglecting second order time derivatives
there. Thus, seeking for solution of the form

Qn = F1e
(ν+i∆/2)t and Qm = F2e

(ν−i∆/2)t, (13)
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FIG. 2: Long-range dynamics: Time dynamics of normal
modes from numerical simulations on Eqs. (3) with initial
mode amplitude A = 1.4225 (graph a) and A = 1.97 (graph
b). Curves are color-coded according to the same principle
as in Fig. 1. Insets show the dependence of growth rates on
the initial lowest mode amplitude according to the theoretical
formula (15). Dashed lines show the estimated grow rates for
even (a) and odd (b) modes.

with F1, F2 constants and real growth increment ν, we
get two coupled algebraic equations

Ωn(∆−2iν)F1 − Gn
mrpQ

(a)
r Q(b)

p F2 = 0 (14)

Ωm(∆+2iν)F2 − Gm
nrp

(

Q(a)
r

)∗ (

Q(b)
p

)∗

F1 = 0.

The solvability condition of this system leads to the
growth rate

ν =
1

2

√

Gn
mrpG

m
nrp

∣

∣

∣
Q

(a)
r

∣

∣

∣

2 ∣
∣

∣
Q

(b)
p

∣

∣

∣

2
/

(ΩnΩm)−∆2. (15)

Usually the first term under the square root is very small
but the growth rate could still be real (inducing the insta-
bility) if the resonance condition ∆ → 0 is realized. Thus,
changing A, we monitor the variation of ∆ given by (11).
We check for which set of the renormalized frequencies
of the modes the resonance condition is fulfilled. As long
as r and p are both odd, the resonance condition can
be realized separately for odd and even modes. In other
words, for some value of A, only even modes become un-
stable and their amplitude grow, while odd modes remain
at their stationary values (which they abruptly acquire
after the initial interaction with Q1 mode). Only when
even modes grow sufficiently, the odd modes instability
develops. However, this is not always the case: If only
odd modes participate in the resonance condition, they
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will first leave their stationary vlaues and grow exponen-
tially, while even modes will join only after odd modes
reach the nonperturbative limit.

It is very important to stress that the instabilities we
observe are sporadic, which means that if the instabil-
ity is realized for certain values of A, it will not re-
main for larger values of A, since the resonance con-
dition will be violated. This is clearly seen in nu-
merical simulations [see Fig. 1b)-d)] where the dy-
namics of mode energies computed from the relation

Ej = N

(

∣

∣

∣
Q̇j

∣

∣

∣

2

+Ω2
j |Qj|

2

)

/

2 is shown. As shown in

Fig. 1b)-d), the instability appears for A = 1.98, allowing
the onset of equipartition in the system where all (time
averaged) mode energies become equal. However, a fur-
ther increase of A leads again to the stable q-breather
state. Only for sufficiently large amplitudes (A > 2.6)
the system is always unstable.

Let us note that only the instability of one pair of even
(odd) modes is sufficient for the development of expo-
nential growth of other even (odd) modes with the same
growth rate. Indeed, even (odd) modes are coupled via
the following mechanism

Q̈n+2 = − (Ωn+2)
2
Qn+2 −Gn+2

n11 QnQ1Q1, (16)

derived from Eq. (5).

From the above analytic considerations, it is evident
that in order to find the instability islands, one should
analyze the effective frequency difference (11). It is clear
that when it vanishes, the growth rate (15) becomes real
and the instability takes place. In other words, one has to
find the set of modes m,n, r, p and the amplitude A such
that ∆ → 0. For our initial condition, it is natural to seek
resonances with the primary harmonic Ω1 and perhaps

the harmonics of the third mode Ω
(a)
3 , which can be more

easily excited.

We have found multiple sets of these parameters for
which either odd or even mode instabilities occur. For
instance, if one chooses the set n = 6, m = 2, r = 1,
p = 3 with frequencies Ω6, Ω2, Ω1, 3Ω1, respectively, one
gets ∆ = 0 for A = 1.425. For slightly smaller or larger
values of A, the resonance condition is violated and the
system becomes stable again. It is possible to check these
theoretical predictions via direct numerical simulations
of Eqs. (3) and initial condition (7) with A = 1.4225. The
results are displayed in Fig. 2(a), where the inset shows
the dependence of growth rate calculated from (15) on
A, while numerical simulations are presented in the main
plot. It is seen that even modes grow first with growth
rate ν = 0.0006 which is in good agreement with the
theoretical value. It is remarkable that the first modes
to participate in the growth almost in unison are indeed
Ω6 and Ω2.

Furthermore, it is possible to find a scenario where odd
modes grow first. This is realized for the set of modes
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FIG. 3: a) Analytically calculated growth rate according to
formula (15) in the case of the short-range FPU model. b)
and c) display mode stability/instability near the theoretically
predicted threshold value. d) shows mode dynamics far from
the instability threshold value. In all simulations, N = 32.

n = 9, m = 5, r = 1, p = 3 with frequencies −Ω9, Ω5, Ω1,
−Ω3, respectively. One gets the ∆ = 0 resonance condi-
tion for the value A = 1.97: the corresponding numerics
and analytical results are presented in Fig. 2(b).

Now it is straightforward to extend the study of this
unusual instability behavior to the conventional short-
range FPU model. Indeed, mode evolution, Eq. (5), is
applicable for the short-range case as well, the only dif-
ference is contained in the unperturbed frequencies Ω0

n.
Note that in the short-range FPU unperturbed frequen-
cies of low modes are almost equidistant, see Fig. 1a., in
contrast to the long-range case. Therefore, the denomi-
nator in Eq. (9) is close to zero, which is the reason for
the well known phenomenon of FPU recurrences (large
energy transfer between the low modes) [1–3]. Thus,
although the instability mechanism is present in short-
range as well, the energy exchange among modes does
not allow steady exponential growth of the unexcited
modes. The short-range FPU instability develops com-
pletely only for larger values of the amplitude A, when
instabilities are not sporadic.

Seeking for the resonant modes in the short-range FPU
model, one finds the set n = 2, m = N − 2, r = 1, p = 3
with frequencies Ω2, Ω2, Ω1, 3Ω1, respectively. Then the
condition ∆ = 0 is reached for A = 0.29. Plotting again
the growth rate ν versus A according to the formula (15),
we get the dependence presented in Fig. 3a. The instabil-
ity is no more sporadic: instead, after it is triggered at a
given value of A = 0.249, it persists for all larger values.
In Figs. 3b-d, we plot the modes amplitude evolution for
different values of A. Instability develops in the range
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A = 0.24− 0.26, in excellent agreement with theoretical
predictions.
Finally, as concluding remarks, we address the question

of estimating the threshold amplitude Ath below which
no sporadic instability takes place in the large N limit.
The total number of harmonics in the N modes (see e.g.
Eq. (9) for the third mode) scales as N ! ∼ NN ; con-
sequently the distance between neighboring harmonics
decreases as N−N . Therefore, the average detuning ∆
in formula (15) should be of the same order and thus
∆2 ∼ N−2N . On the other hand, the first term under
the square root scales as (A2

th/N
4)N in the perturbative

limit. From the condition that the growth rate in Eq. (15)
is real it follows that Ath ∼ N (this estimate is compati-
ble with recent unpublished numerical experiments [28]).
Therefore, the energy density threshold remains finite at
large N , ǫth = Eth/N ∼ A2

th/N
2 ∼ const..
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