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We show that nonrelativsitic scaling of the collisionless Vlasov-Maxwell system implies
the existence of a formal invariant slow manifold in the infinite-dimensional Vlasov-
Maxwell phase space. Vlasov-Maxwell dynamics restricted to the slow manifold recovers
the Vlasov-Poisson and Vlasov-Darwin models as low-order approximations, and provides
higher-order corrections to the Vlasov-Darwin model more generally. The slow manifold
may be interpreted to all orders in perturbation theory as a collection of formal Vlasov-
Maxwell solutions that do not excite light waves, and are therefore “dark." We provide a
heuristic lower bound for the time interval over which Vlasov-Maxwell solutions initialized
optimally-near the slow manifold remain dark. We also show how dynamics on the slow
manifold naturally inherit a Hamiltonian structure from the underlying system. After
expressing this structure in a simple form, we use it to identify a manifestly Hamiltonian
correction to the Vlasov-Darwin model. The derivation of higher-order terms is reduced
to computing the corrections of the system Hamiltonian restricted to the slow manifold.

1. Introduction

The Vlasov-Maxwell, Vlasov-Poisson, and Vlasov-Darwin models are three of the most
well-known kinetic descriptions of fully-ionized plasmas. In CGS units, the Vlasov-Poisson
system can be "derived" from the Vlasov-Maxwell system by sending the normalized
speed of light c to infinity. The Vlasov-Darwin model can then be understood as the
next-to-leading order correction to Vlasov-Poisson when expanding Vlasov-Maxwell in
powers of 1/c. This picture of the interrelationships between these three models, while
sufficient for many purposes in plasma modeling, begs a number of subtle questions. In
particular,

(1) In what sense does a solution of the Vlasov-Poisson system or the Vlasov-Darwin
system approximate a solution of the Vlasov-Maxwell system? How accurate is the
approximation, and for how long is the approximation valid?

(2) The Vlasov-Darwin model improves the Vlasov-Poisson model; can one improve
Vlasov-Darwin without invoking the full complexity of Vlasov-Maxwell?

(3) In the absence of collisions, each of these models has its own Hamiltonian structure.
How can the Vlasov-Poisson and Vlasov-Darwin structures be deduced systematically
from the Vlasov-Maxwell structure? If there are higher-order corrections to Vlasov-
Darwin, what can be said of their Hamiltonian structures?

Question (1) has been studied intensively by a number of authors in the applied
mathematics community, including Asano & Ukai (1986), Degond (1986), and Schaeffer
(1986). Each of these authors independently showed that solutions of the Vlasov-Maxwell
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system with “well-prepared" initial conditions remain within 1/c of corresponding Vlasov-
Poisson solutions on bounded, c-independent time intervals. Here, “well-prepared" means
that the initial magnetic field vanishes and the initial electric field is irrotational. Similar
results are given in Degond & Raviart (1992) for the Vlasov-Darwin system, where
it is shown that Vlasov-Darwin solutions provide second-order approximations to the
magnetic field and third order approximations to the electric field predicted by Vlasov-
Maxwell. Again, the approximations apply on bounded, c-independent time intervals for
well-prepared initial data. A shortcoming of these analyses is their lack of a phase-space-
geometric interpretation. In particular, the geometric significance of “well-prepared"
initial data is unclear.

Question (2) is less studied than (1), but plays a prominent role in Han-Kwan et al.

(2018), where linearizations of high-order corrections to Vlasov-Darwin were used to
establish long-term nonlinear stability of Penrose-stable Vlasov-Maxwell equilibria. This
analysis clearly shows that better approximations follow from increasingly well-prepared
initial data. Again, the phase-space-geometric picture of these results is lacking. Question
(3) has also received fairly little attention in the literature. The most notable result in this
direction comes from Chandre (2013), who obtains the Poisson bracket for the Vlasov-
Poisson system by applying Dirac constraint theory to the Vlasov-Maxwell bracket. It is
unclear if this construction extends to treat the Vlasov-Darwin system, or to corrections
thereof.

The purpose of this Article is to develop a phase-space-geometric picture of the answers
to each of these questions. Our fundamental observation will be that the electrostatic non-
relativistic scaling of the Vlasov-Maxwell system (2.14) gives rise to a formal invariant
manifold in the Vlasov-Maxwell phase space. By calculating the asymptotic expansion
of this manifold, we will demonstrate that Vlasov-Maxwell dynamics on the manifold
coincides with Vlasov-Poisson dynamics to leading order, and Vlasov-Darwin dynamics
at next-to-leading order. More generally, higher-order truncations of dynamics on the
manifold lead to nonrelativistic plasma models that improve on Vlasov-Darwin and
share a phase space with the Vlasov-Poisson system. That is, they comprise closed
evolution laws on the space of distribution functions, rather than on the composite space
of distribution functions and electromagnetic fields in which Vlasov-Maxwell dynamics
evolves in general.

These observations immediately shed light on questions (1) and (2) above. Solutions
of the Vlasov-Poisson and Vlasov-Darwin models should be understood as low-order
approximations of Vlasov-Maxwell dynamics on its (formal) invariant manifold. Better
approximations can be found systematically by deriving the higher-order on-manifold
corrections to Vlasov-Maxwell. In particular, better approximations require choosing
initial conditions that lie on the formal invariant manifold with greater accuracy, which
explains and generalizes the role played by “well-prepared initial data" in the work
referenced above. The timescale over which such approximations are valid can be no
longer than the normal stability timescale for the formal invariant manifold.

Physically, the formal invariant manifold represents nontrivial plasma motions that
are free of light waves generated by collective effects. Thus, phase space points on the
formal invariant manifold represent formal solutions of the Vlasov-Maxwell system that
are dark to all orders in 1/c. Here we are careful to distinguish between collective light
waves and light waves more generally since plasmas exhibit emission processes Bekefi
(1966) that are not captured by the Vlasov-Maxwell model. We also emphasize that here
we refer specifically to light waves, i.e. waves with the dispersion relation ω2 = ω2

p+k
2 c2

in the small-amplitude regime, and not more general fast modes such as compressional
Alfvén waves. Finally, we stress that “formal solutions" differ from “solutions," since
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the formal invariant manifold is not a true invariant object in the Vlasov-Maxwell
phase space – truncations of its asymptotic expansion provide approximate invariant
manifolds. Therefore, in general, we should only expect solutions of the Vlasov-Maxwell
system initialized near the formal invariant set to remain dark for a limited interval of
time. In Section 2.4, we will give a heuristic argument based on rigorous analysis from
Kristiansen & Wulff (2016) that this time interval is likely at least O(c) as c → ∞ for
Vlasov-Maxwell solutions initialized on an optimal truncation of the formal invariant
manifold.

Mathematically, the formal invariant manifold underlying Vlasov-Poisson, Vlasov-
Darwin, and higher-order corrections thereof is an example of a slow manifold. The
general theory of slow manifolds is reviewed in MacKay (2004) for a mathematical
audience and in Burby (2020b) for an audience of plasma physicists. Since a slow
manifold in a Hamiltonian system necessarily inherits a Hamiltonian structure, it follows
immediately that the dark slow manifold in the Vlasov-Maxwell system has a natural
Hamiltonian structure. We will calculate this induced Hamiltonian structure and show
that it reproduces the known Hamiltonian structures underlying the Vlasov-Poisson and
Vlasov-Darwin systems. Moreover, we will introduce a formal near-identity change of
dependent variables on the slow manifold that makes the slow manifold Poisson bracket
agree with the Vlasov-Poisson bracket to all orders in 1/c. The same procedure, which
we call symplectic rectification, was used by Burby (2017b) to obtain a closed-form
expression for the bracket on the all-orders extended MHD slow manifold inside of
the two-fluid system. In terms of these rectified variables, we will then formulate a
manifestly-Hamiltonian correction to the Vlasov-Darwin model. See Eq. (3.66) for the
post-Darwin Hamiltonian, Eqs. (3.61) for the Poisson bracket, and Eq. (3.70)-(3.72) for
the definitions of the rectified variables. To the best of our knowledge, this is the first
Hamiltonian correction to Vlasov-Darwin that appears in the literature. Deducing higher-
order Hamiltonian corrections is reduced to the task of computing higher-order terms in
the system Hamiltonian restricted to the slow manifold. Altogether, these results provide
a satisfying resolution of question (3) above.

The outline of this Article is as follows. First we briefly review slow manifold reduction
in Section 2.1. We observe that the theory of slow manifold reduction applies to the
Vlasov-Maxwell system in Section 2.2, and then exploit this observation in Section
2.3 in order to formally demonstrate the existence of dark plasmas and uncover their
governing dynamical laws. The rest of the article, i.e. Section 3 will be devoted to a
rather detailed analysis of the basic structural properties of dark plasma dynamics. We
will show: (a) the Hamiltonian structure underlying the Vlasov-Maxwell equations is
inherited by dark plasma dynamics (Section 3.2); (b) a formally-exact expression for the
dark plasma Poisson bracket may be obtained through the application of a sequence of
near-identity changes of dependent variables we call symplectic rectification (Section 3.3);
(c) the rectifying transformation may be calculated efficiently using infinite-dimensional
Lie transforms; and (d) explicit expressions for the dark plasma Poisson bracket and
Hamiltonian functional (Section 3.4).

2. The Vlasov-Maxwell equations as a fast-slow system

2.1. Slow manifold reduction

We will apply a dimension-reduction technique for dynamical systems with a time
scale separation known as slow manifold reduction. An overview of this tool, tailored
for an audience of plasma physicists, can be found in Burby (2020a), while a more
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mathematical review is given by MacKay (2004). Readers can also consult Van Kampen
(1985) for additional applications and context. The reduction to slow manifold has been
used historically by Lorenz (1986) in the hopes of understanding how fast internal gravity
dynamics can be decoupled from the slow Rossby waves consistent with meteorological
observations to explain why the latter dominate. This was immediately followed by
proving the non-existence of the aforementioned manifold in Lorenz & Krishnamurthy
(1987) and the clarification Lorenz (1992). We note that when slow manifold existence
and stability cannot be established rigorously for a given mathematical model one may
consider a “backwards” theory alternative, e.g. Roberts (2015), which states that there
exists a system close to the original one with an exact slow manifold.

Let the system be describable by a set of “slow” variables x and “fast” variables y, and
suppose that the dynamics of the pair (x, y) are prescribed by the system of (possibly
infinite-dimensional) ordinary differential equations

ẋ = gǫ(x, y)

ǫẏ = fǫ(x, y), (2.1)

where 0 < ǫ ≪ 1 is a small parameter. When ǫ = 0, we see that the second differential
equation degenerates to an algebraic equation that imposes the constraint y = y⋆0(x),
where y⋆0 is defined implicitly by

f0(x, y
⋆
0(x)) = 0. (2.2)

It was shown by Fenichel (1979) in finite dimensions that if the manifold

M = {(x, y) : y = y⋆0} (2.3)

is normally hyperbolic (all eigenvalues of Dyfǫ(x, y
⋆(x)) have non-zero real parts) then,

under some regularity assumptions, the dynamics of (x, y) with 1 ≫ ǫ > 0 contain an
invariant manifold that is close to M and that converges to M as ǫ→ 0.

When M is not normally hyperbolic, the invariant manifold need not exist. However,
almost invariant manifolds can still be constructed by introducing the formal power series

y⋆(x) = y⋆0 + ǫy⋆1 + ǫ2y⋆2 + . . . , (2.4)

and demanding that the “graph" of y⋆ is invariant order-by-order in ǫ. For non-negative
integer n, the manifold

M(n)
ǫ = {(x, y) | y = (y⋆0 + · · ·+ ǫny∗n)(x)} (2.5)

is almost invariant in the sense that the normal component of the vector field (ẋ, ẏ) is

small along M
(n)
ǫ . Because the projection of (ẋ, ẏ) along M

(n)
ǫ is O(1), M

(n)
ǫ is known

as a slow manifold of order n, while the formal power series y⋆(x) is known as the formal

slow manifold or the slaving function.
The various terms of the formal slow manifold are obtained from the appropriate

ordering of the original equations of motion (2.1). One introduces Fréchet derivatives
(for background see e.g. Courant & Hilbert (1953); Lang (1995)), which are commonly
computed using the directional derivative formula

DF (ψ) [δψ] :=
d

dǫ

∣∣∣
0
F (ψ + ǫ δψ), (2.6)

the algorithm for obtaining these terms amounts to solving the partial differential
equation (functional partial differential equation in infinite dimensions)

ǫDxy
⋆
ǫ (x) [gǫ(x, y

⋆
ǫ (x))] = fǫ(x, y

⋆
ǫ (x)), (2.7)
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order-by-order in ǫ. For instance, the first order terms are

Dxy
⋆
0(x) [g0(x, y

⋆
0(x))] = f1(x, y

⋆
0(x)) +Dyf0(x, y

⋆
0(x)) [y

⋆
1(x)] (2.8)

Likewise, the second order terms, albeit somewhat cumbersome, are written

ε2 ⇒ Dy∗1(x) [g0 (x, y
∗
0(x))] +Dy∗0(x) [g1 (x, y

∗
0) (x)] +

+Dy∗0(x) [Dyg0 (x, y
∗
0(x)) [y

∗
1(x)]] = f2 (x, y

∗
0(x)) +

Dyf1 (x, y
∗
0(x)) [y

∗
1(x)] +

1

2
D2

yf0 (x, y
∗
0(x)) [y

∗
1(x), y

∗
1(x)] +

+Dyf0 (x, y
∗
0(x) [y

∗
2(x)]

(2.9)

It is natural to wonder about the normal stability of the slow manifolds M
(n)
ǫ . In other

words, if a trajectory (x(t), y(t)) begins near M
(n)
ǫ then how long does it remain near

M
(n)
ǫ ? When M is attractive, one expects stability over arbitrarily-large time intervals.

When M is normally elliptic (imaginary eigenvalues), as will be the case for the slow
manifold studied in this Article, dynamics near a slow manifold are neutrally-stable to
leading-order in perturbation theory, and therefore exhibit normal stability on at least
an O(1) timescale (Note that the shortest timescale contained in the dynamical system
(2.1) is O(ǫ)). However, higher-order effects can lead to resonances that destabilize the
slow manifold on O(1/ǫ)-timescales. For a large class of Hamiltonian fast-slow systems
with finitely-many slow variables and elliptic slow manifolds, Kristiansen & Wulff (2016)
showed that there is an optimal truncation of the slow manifold that remains normally
stable on the O(1/ǫ) timescale. Establishing normal stability in the elliptic case over even
larger time intervals may sometimes be achieved by identifying an adiabatic invariant
whose critical manifold coincides with the formal slow manifold, as in Cotter & Reich
(2004). Long-term slow manifold stability is also consistent with the long-term equilib-
rium stability results obtained for the Vlasov-Maxwell system with non-relativistic scaling
in Han-Kwan et al. (2018). In the spirit of these previous studies, we conjecture that the
slow manifold identified in this Article exhibits normal stability on an O(1/ǫ) timescale,
at least when optimally truncated. In Section 2.4 we outline how the optimal truncation
strategy developed in Kristiansen & Wulff (2016) applies formally to the Vlasov-Maxwell
system, and therefore provide additional supporting evidence for our conjecture. In future
work, we plan to investigate the possibility of our slow manifold arising as the zero level
set of a wave action adiabatic invariant, which would provide further insight into normal
stability.

2.2. The Vlasov-Maxwell equations as a fast-slow system

Various plasma models, including magnetohydrodynamics (MHD) and Hall MHD,
rely on the assumption that one can ignore certain large-scale high-frequency modes,
such as light waves. This drastically reduces the multi-scale difficulty of modeling a
plasma. However, the approximation is often made in ad hoc fashion. Here we work
with the collisionless Vlasov-Maxwell system of equations and systematically perform an
asymptotic expansion such that formally the small parameter corresponds to the inverse
normalized speed of light c−1. In particular, in order to form a dimensionless small
parameter one can consider a ratio between a typical speed of a particle and the speed
of light. This expansion procedure bears a resemblance to the well-known Chapman-
Enskog method, but retains the connection with the (infinite-dimensional) phase space
geometry underlying the closure. This is achieved by computing the slaving function y⋆(x)
instead of power-series expansions of solutions of the Vlasov-Maxwell equations. This
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more geometric perspective on the closure problem will be instrumental in uncovering
the closure’s Hamiltonian structure.

We assume that each plasma species σ (typically two species are considered, but any
number of species may be included without difficulty) obeys a collisionless relativistic
Vlasov equation

∂fσ
∂t

+ v ·
∂fσ
∂r

+ eσ (E+ v ×B) ·
∂fσ
∂p

= 0, (2.10)

coupled, as usual, with a self-consistent electromagnetic field defined on the triply-
periodic spatial domain Q = S1×S1×S1. (Our slow manifold analysis is straightforward
to adapt to other domain topologies and boundary conditions. However, our analysis of
the Hamiltonian structure on the slow manifold requires either an unbounded or periodic
domain. The reason for this limitation is that the Hamiltonian structure underlying the
Vlasov-Maxwell system is only understood in unbounded or periodic domains; identifying
the Hamiltonian structure in a bounded domain with even simple boundary conditions
like specular reflection remains an open research problem.) The field evolves according
to Maxwell’s equations in SI units

−
1

c2
∂E

∂t
+∇×B = µ0J− µ0JH , (2.11)

∂B

∂t
+∇×E = 0, (2.12)

∇ ·E =
ρ− ρH
ε0

and ∇ ·B = 0, (2.13)

where µ0ε0 = 1/c2 with c a dimensionful speed of light, ρH =
∫
Q
ρ d3r/

∫
Q
d3r, and

JH =
∫
Q
J d3r/

∫
Q
d3r denotes the harmonic component of the current density (for more

details see Appendix B). Note that the integral of the usual Gauss’ Law ǫ0 ∇ · E = ρ
over the periodic domain Q = (S1)3 imposes the restriction

∫
Q
ρ d3x = 0, i.e. that the

total charge vanishes. Therefore the ρH in (2.13) may be interpreted as the constant
neutralizing background necessary to enforce this consraint when the plasma itself has a
net charge. In order to find the small parameter, we pass to new dimensionless variables
via a transformation that identifies typical length L0 and time t0 scales

t0 =

√
4π ε0m0

e0 ρ0

mσ = m0m
′
σ, eσ = e0 e

′
σ, t = t0t

′,

fσ(r,p) =
ρ0
e0

(
t0

m0 L0

)3

f ′
σ

(
r

L0
,
t0p

m0 L0

)
,

E(r) =
L0 ρ0
4πε0

E′

(
r

L0

)
, B(r) =

L0 ρ0
4πε0 c

B′

(
r

L0

)
(2.14)

After the transformation is applied, primes are suppressed and a small parameter is
identified as ǫ := L0/(ct0). In what follows, we will use the symbol 1/c as a convenient
placeholder for ǫ. The reader may observe that in this way the equations appear to be
written in CGS units, which are better suited for the particular non-relativistic limit we
study. After application of these steps the Vlasov equation (2.10) is re-written

ḟσ + v · ∇fσ + eσ

(
E+

1

c
v ×B

)
·
∂fσ
∂p

= 0, (2.15)

where the electric field E ∈ Ω1
T ⊕Ω1

L is a vector field on Q and can be decomposed into
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transverse and longitudinal components E = ET+EL =: ΠLE+ΠTE, such that ∇·ET =
0 and ∇× EL = 0 See Appendix B for a review of Helmholtz-Hodge decomposition on
compact manifolds without boundaries. (The most general decomposition of a smooth
vector field on the triply-periodic domain Q must allow also for a harmonic component
EH such that ∇ · EH = 0 and ∇ × EH = 0. However, this harmonic component may
be dropped self-consistently provided the harmonic component of the current density is
subtracted from the Ampére-Maxwell equation, as in Eq. (2.11).) Note that the projection
operators may be expressed as

ΠT = 1−ΠL −ΠH = −∆−1∇×∇× (2.16)

ΠL = ∇∆−1∇· (2.17)

For details see (B 17) and (B 18).
Single-particle phase-space distribution functions fσ ∈ L1(T ⋆Q) ∩ C∞(T ∗Q) are inte-

grable and smooth on T ⋆Q = Q× R3. Moreover, p = mσγσv, where

γσ =

√
1 +

p2

m2
σc

2
. (2.18)

The magnetic field B ∈ Ω2
T is purely transverse ∇ ·B = 0. Likewise in the new units we

have (2.13) a Gauss law constraint

∇ · EL = 4π
∑

σ

eσ

∫
d3p fσ − 4πρH . (2.19)

For the transverse and longitudinal components of the electric field we have the
evolution equations

1

c

∂EL

∂t
= −

4π

c
JL, (2.20)

1

c

∂ET

∂t
= ∇×B−

4π

c
JT , (2.21)

where

J :=
∑

σ

eσ

∫
d3pvfσ (2.22)

Using the gauge where the electrostatic potential vanishes, the relationship between
EL and the longitudinal part of the vector potential AL is

EL = −
1

c

∂AL

∂t
. (2.23)

Finally, the system is closed by Faraday law

1

c

∂BT

∂t
= −∇×ET . (2.24)

It has been proved by Degond & Raviart (1992) that the Darwin model in three
dimensional cases approximates Maxwell’s equations for appropriate initial data up to
the second order of the dimensionless parameter v/c for magnetic field B and to the third
order for electric field E, where v is the characteristic velocity. (The somewhat mysterious
notion of "appropriate" initial data is laid bare in the context of slow manifold reduction
theory; well-prepared initial data are merely initial conditions chosen to lie on the slow
manifold.) In what follows we will re-derive this result and go an order beyond Darwin
to establish the next approximation.
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2.3. The dark slow manifold: Piezoelectric correction

The candidates for the slow variables in our case areX = (L1(T ⋆Q)∩C∞(T ∗Q))×Ω1
L ∋

(f,EL) and, following the recipe (2.4), we treat transverse fields as fast Y = Ω1
T ×Ω2

L ∋
(ET ,B) (which physically carry light waves.) Our slaving functions are therefore

E⋆
T (fσ,EL) = E⋆

T0(fσ,EL) +
1

c
E⋆

T1(fσ,EL) + . . .

B⋆(fσ,EL) = B⋆
0(fσ,EL) +

1

c
B⋆

1(fσ,EL) + . . . (2.25)

Using (2.25) we can cast equations (2.21) and(2.24) as

∇×B⋆ =
4π

c
JT +

1

c
DfE

⋆
T

[
ḟ
]
+

1

c
DEL

E⋆
T

[
ĖL

]
(2.26)

and

−∇×E⋆
T =

1

c
DfB

⋆
[
ḟ
]
+

1

c
DEL

B⋆
[
ĖL

]
. (2.27)

We find trivially that in the zeroth order expansion with respect to 1/c

∇×E⋆
T0 = 0, ∇×B⋆

0 = 0, (2.28)

which implies

E⋆
T0 = 0, B⋆

0 = 0, (2.29)

because ET and B are solenoidal. Notice that the first three non-zero terms in the
expansion of J are

J0 =
∑

σ

eσ
mσ

∫
d3p fσp, J2 = −

∑

σ

eσ
2m3

σ

∫
d3p fσp

2p, (2.30)

J4 =
∑

σ

3 eσ
8m5

σ

∫
d3p fσp

4p, . . .

The absence of transverse fields to this order suggests absence of light waves. Below we
will show that if we prepare plasma in this special state, light waves are going to be
suppressed in future. In the first order

∇×E∗
T1 = 0,

1

c
∇×B∗

1 = −
4π

c
∇×∆−1∇× J0 (2.31)

Thus the following (Darwin) magnetic field is recovered

B⋆
1 = −4π∆−1∇× J0 := −∆−1∇×

∑

σ

4πeσ
mσ

∫
d3p fσp, (2.32)

In many circumstances we prefer to work with the transverse vector potential instead of
the magnetic field:

A⋆
T1 = −4π∆−1ΠT J0, (2.33)

where special care is taken to ensure that the Green’s function acts on an object that is
already in the transverse space. Meanwhile it turns out that the electric field is absent
in this order

E⋆
1 = 0 (2.34)

This limit constitutes the well known Darwin approximation. As stated earlier it is
typically applied in quasistatic situations. However Eremin et al. (2013) show its utility
in the intermediate range for high-frequency capacitively coupled discharges. The Darwin
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approximation offers a simple and efficient way of carrying out electromagnetic simula-
tions as it removes the Courant condition plaguing explicit electromagnetic algorithms
and can be implemented as a straightforward modification of electrostatic algorithms.

From (2.32) and the 1/c2 expansion of (2.21) it is evident that this time

B⋆
2 = 0 (2.35)

On the other hand, from 1/c2 expansion of (2.27) we see

∇×E⋆
T2 = −DfB

⋆
1

[
ḟ0
]
≡ −

∑

σ

DfσB
⋆
1

[
ḟ0
σ

]
, (2.36)

where D is a Fréchet derivative and we only need to keep zeroth order terms (with respect
to 1/c expansion) in the expression for ḟ (see (2.15)). Because of (2.18) it is clear that
the effects of relativity are not felt in this limit and thus we have v ≈ p/m. Thus, to this
order,

ḟ0
σ +

p

mσ
· ∇fσ + eσEL ·

∂fσ
∂p

= 0 (2.37)

From (2.36) one obtains after integration by parts

E⋆
T2 = −

∑

σ

∆−1ΠT

(
4πeσ ∇ ·T0σ − ω2

pσEL

)
, (2.38)

where we have introduced the zeroth order stress tensor

T0σ :=

∫
d3p

pp

m2
σ

fσ, (2.39)

and plasma frequency

ω2
pσ :=

4πe2σ
mσ

∫
d3p fσ. ω2

p :=
∑

σ

ωpσ (2.40)

Note that due to the spatial dependence of ω2
pσ the last term in (2.38) does not vanish

despite the fact that it is acted upon by the transverse projection operator.
According to Eq. (2.38), stress generates transverse electric fields. Obviously, in

quasineutral plasma if the species are moving with the same velocity and the distribution
function, the term would vanish. Thus we conclude that it has a two-fluid nature. The
origin of this term can be, in fact, traced back to the Ohm’s law found in Braginskii
multifluid model with quasineutrality. Similar reformulation leading to this term has
been proposed for Maxwell-Euler system by Degond et al. (2017). A similar effect may
be found in certain solids. In solids piezoelectric effect is the induction of an electric
charge in response to an applied mechanical strain, see Zhang & Hoshino (2014), for
example. It has numerous applications, most notably in microphones.

We can show that the stress-tensor term can be simplified for a non-uniform drift-
ing Maxwellian (since only zeroth order corrections are required we can use the non-
relativistic expression)

f(r,v) = n(r)
( m
πT

) 3
2

e−
m(v−V(r))2

2T . (2.41)

We have ∫
d3v vjvkf = δjk

nT

2m
+ nVjVk (2.42)

Next, because of the longitudinal form of the first term it vanishes under the transverse
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projection. The stress term survives, in general. Of course, the second term in (2.38)
vanishes in case of a uniform density.

The second term in (2.39) demonstrates the coupling between the longitudinal mode,
originating in Langmuir oscillations, and the transverse mode. This effect is akin to the
generation of transverse waves from the longitudinal ones. However, in this approximation
the field that is generated is of the static nature, rather than radiation.

To see what happens further we go to the next order. From the application of (2.35)
and ḟ1 = 0 to (2.26) it is easy to see

E⋆
T3 = 0. (2.43)

On the other hand, we have a rather more complicated correction to the magnetic field
determined by

∇×B⋆
3 = 4πJT2 [f ] +DfE

⋆
T2

[
ḟ0
]
+DEL

E⋆
T2

[
Ė0

L

]
, (2.44)

which using (2.20) and (2.30) leads to

∇×B∗
3 = −

∑

σ

4πeσ
2m3

σ

ΠT

∫
d3p fσp

2p−
∑

σ

4πeσ
mσ

∆−1ΠT

·

∫
d3p

(
4πeσfσΠLJ0 + eσEL

[
p

mσ
· ∇fσ +EL ·

∂fσ
∂p

]
−

− ∇ ·

[
pp

mσ

(
p

mσ
· ∇fσ + eσEL ·

∂fσ
∂p

)])
(2.45)

Thus we collect these terms and use integration by parts to obtain

A⋆
T3 = −∆−2ΠT [∇ · ∇ ·Q0 −∇ · (EL W +W EL)−EL∇ ·W]

− 4π∆−1ΠTJ2+
∑

σ

4π∆−2ΠTω
2
pσΠLJ0, (2.46)

where we have defined the charge-weighted heat flux tensor:

Q0 :=
∑

σ

4πeσ

∫
d3p

ppp

m3
σ

fσ (2.47)

and introduced the velocity weighted by the plasma frequency

W :=
∑

σ

4πe2σ
mσ

∫
p

mσ
fσ d

3p. (2.48)

It is somewhat remarkable that a charge density weighted heat flux produces a magnetic
field in a dark plasma. To our knowledge this has not been reported in the literature yet.

2.4. Stability of the dark slow manifold

Our analysis of the slow manifold so far has been entirely based on asymptotic
expansions. Therefore it is unclear how long an initially-dark Vlasov-Maxwell solution
will remain dark. Any thorough analysis of this question will require detailed functional
analysis. However, we will now show that arguments from Kristiansen & Wulff (2016)
may be applied formally to the Vlasov-Maxwell system in order to obtain a heuristic
that suggests the timescale is at least O(c) as c → ∞ for initial conditions prepared
“optimally close” to the slow manifold. Thus, we believe there is compelling evidence to
conjecture that darkness persists over large time intervals in non-relativistic plasmas.
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Kristiansen & Wulff (2016) study slow manifolds that arise in a certain class of Hamil-
tonian fast-slow systems. The system phase space is assumed to be of the form P =
X × Y ∋ (x, y), where x is the slow variable, y is the fast variable, and both X and Y
are real Hilbert spaces. The fast space Y is allowed to be infinite dimensional, but the
dimension of the slow space X is assumed to be finite. While the rigorous arguments
in this work use finite-dimensionality of X in an essential way, at a formal level the
arguments apply to infinite-dimensional X as well. The Poisson tensor on P is given by
J = ǫJX + JY , where ǫ ≪ 1 and JX ,JY are Poisson tensors on X and Y, respectively.
The system Hamiltonian is required to be of the form

Hǫ(x, y) = hǫ(x) + 〈Rǫ(x), y〉 +
1

2
〈y, (L+ aǫ(x))y〉 + γǫ(x, y), (2.49)

where all ǫ-dependence is continuous, L, aǫ(x) are self adjoint, L + aǫ(x) is invertible,
and γǫ(x, y) = O(||y||3). It is also assumed that hǫ(x), Rǫ(x), aǫ(x) and γǫ(x, y) are real
analytic. In this context, y = 0 defines a limiting slow manifold.

The first major result from Kristiansen & Wulff (2016), Theorem 2.1, states that there
is a near-identity canonical transformation (x, y) 7→ (x, y) that transforms the system
Hamiltonian (2.49) into

Hǫ(x, y) = hǫ(x) + 〈Rǫ(x), y〉+
1

2
〈y, (L+ aǫ(x))y〉+ γǫ(x, y), (2.50)

where aǫ(x) is self-adjoint, all barred quantities are close to their un-barred counterparts,
and, crucially, Rǫ = O(exp(−κ/ǫ)) for some positive constant κ. The evolution equation
for y is therefore ẏ = JY ∇yHǫ = JY(L+ aǫ(x))y+JY ∇yγǫ+JYRǫ(x). Since the right-
hand-side of this equation is exponentially small at y = 0, the set {(x, y) | y = 0} defines
an exponentially-accurate slow manifold.

The barred coordinate system is constructed by applying a sequence of N near-identity
canonical transformations such that, after the nth (n 6 N) step in the iteration, the
transformed Rǫ is smaller by a factor of ǫ/ξn relative to the previous iteration. Here ξn
is a parameter that controls the loss of regularity introduced by the nth transformation;
smaller ξ corresponds to a smaller loss of regularity, but a less dramatic reduction in
the size of the transformed Rǫ. In order to produce an exponential reduction in the
size of the transformed Rǫ while avoiding a catastrophic loss of regularity, the authors
choose ξn ∼ 2ǫ for large n (so ǫ/ξn ∼ 1/2) and N ∼ 1/ǫ. These choices ensure that
size of the transformed Rǫ is halved after a single iteration, and reduced by a factor of
2−1/ǫ = exp(−[ln 2]/ǫ) after N iterations, which is the desired exponential effect.

The next major result from Kristiansen & Wulff (2016), Corollary 2.2, uses the special
coordinates described in the previous paragraph to estimate the stability timescale of
the y = 0 slow manifold. Assuming L + aǫ(x) is positive definite, the result states that
a solution of the fast-slow system with y(τ = 0) = 0 will satisfy y(τ) = O(exp(−κ1/ǫ))
for times τ ∈ [0, κ2/ǫ

2]. In other words, if a solution starts on the exponentially-accurate
slow manifold then it will remain exponentially close to that manifold on a timescale
that is at least O(ǫ−2) in τ . The proof is a Lyapunov-type argument that exploits the
near-constancy of the function

I = 1
2 〈y, (L + aǫ(x))y〉+ γǫ(x, y) (2.51)

along solutions of the fast-slow system. Near invariance of I follows from the following
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simple calculation:

İ =

〈
JY(L+ aǫ(x))y + JY ∇yγǫ + JYRǫ(x), (L+ aǫ(x))y +∇yγǫ

〉
+O(ǫ)

=

〈
JYRǫ(x), (L + aǫ(x))y +∇yγǫ

〉
+O(ǫ)

= O(exp(−κ/ǫ)) +O(ǫ). (2.52)

The arguments from Kristiansen & Wulff (2016) apply formally to the Vlasov-Maxwell
system because of the following. First, we recall that the Vlasov-Maxwell system may be
written as a Hamiltonian system on the space P = X × Y, where X ∋ f is the space of
canonical momentum distribution functions f(x,π), and Y ∋ (ET ,AT ) comprises pairs
of transverse vector potentials AT and transverse electric fields ET . The Poisson bracket
of functionals F (f,ET ,AT ), G(f,ET ,AT ) is given by {F,G} = ǫ {F,G}X + {F,G}Y ,
where ǫ = 1/c and

{F,G}X =

∫ [
δF

δf
,
δG

δf

]
f d3r d3π

{F,G}Y = 4π

∫ (
δF

δET
·
δG

δAT
−

δG

δET
·
δF

δAT

)
d3r. (2.53)

Here [·, ·] denotes the usual canonical Poisson bracket on (x,π)-space, as appropri-
ate when working with canonical momenta π. Note that this is the only section
where we work in coordinates which depend on canonical momentum for consistency
with Kristiansen & Wulff (2016). This bracket is obtained by quotioning the “canonical”
Vlasov-Maxwell bracket discussed in Marsden & Weinstein (1982) by gauge transforma-
tions. The system Hamiltonian is

Hǫ(x, y) =
1

8π

∫
ET · ET d

3r+
1

8π

∫
∇×AT · ∇ ×AT d

3r

+
1

8π

∫
EL(f) ·EL(f) d

3r+

∫
1

2m
(π − ǫ eAT )

2
f d3r d3π, (2.54)

where the longitudinal electric field EL(f) = −∇ϕ(f) is the unique solution of the
elliptic partial differential equation −∆ϕ(f) = 4πe n(f) − 4πρ0, where ρ0 denotes a
constant neutralizing background charge and n(f) =

∫
f(r,π) d3π is the number density.

Note that the time variable τ for this Hamiltonian formulation of Vlasov-Maxwell is
related to the time variable t used elsewhere in this Article by τ = c t. As required
by Kristiansen & Wulff (2016), the Poisson bracket has a product structure that is
compatible with the fast-slow split, and the Hamiltonian has the form (2.49), with

L(ET ,AT ) =
1
4π (ET ,−∆AT ) (2.55)

aǫ(f)(ET ,AT ) = ǫ2 (0, e
2 n(f)
m AT ) (2.56)

hǫ(f) =

∫
1

2m
|π|2 f d3r d3π +

1

8π

∫
EL(f) · EL(f) d

3r (2.57)

Rǫ(f) = −ǫ e

∫
π

m f d3π (2.58)

γǫ(f,ET ,AT ) = 0. (2.59)

It follows that the formal transformation (x, y) 7→ (x, y), mentioned earlier, that “flattens"
the slow manifold can be derived for this system much as in Kristiansen & Wulff (2016).
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Analyticity of the Vlasov-Maxwell system in (f,ET ,AT ) then suggests that optimal
truncation of the formal transformation should produce an exponentially-accurate slow
manifold, as in Theorem 2.1 from Kristiansen & Wulff (2016). If this is indeed the case,
then positive-definiteness of L + aǫ (easily seen to be true) together with the proof of
Corollary 2.2 in Kristiansen & Wulff (2016) implies normal stability of the exponentially-
accurate dark slow manifold for τ ∈ [0, c2/ǫ

2], or equivalently t ∈ [0, c2/ǫ]. In other
words, there exist solutions of the Vlasov-Maxwell system with initially exponentially-
small light-wave activity that remain exponentially close to the dark slow manifold on
O(1/ǫ) = O(c) time intervals.

While this argument suggests a concrete path toward proving persistence of dark
plasma states in the Vlasov-Maxwell phase space on O(1/ǫ) timescales, it is important
to understand the argument’s shortcomings. First and foremost, in Kristiansen & Wulff
(2016), it was crucial for the authors to understand precisely the loss of regularity
introduced by each step in their sequence of canonical transformations. Due to specifics
of the function-analytic setting considered by Kristiansen & Wulff (2016), the details
of this regularity loss may very well differ for the Vlasov-Maxwell system. Any mod-
ifications that might arise need to be studied and accounted for appropriately in the
optimal truncation procedure. Finally, this argument establishes long-term stability of
the optimally-truncated slow manifold, but not of lower-order truncations. Stability of
these lower-order truncations must be assessed using other methods.

On the other hand, the issues inherent to this argument disappear if the Vlasov-
Maxwell system is replaced with a continuous-time structure-preserving discretization as
in Krauss et al. (2017) or Burby (2017a). It would be interesting to use this argument to
study non-relativistic slow manifolds in discrete Vlasov-Maxwell systems in the future.

3. Dark slow manifold dynamics as a Hamiltonian system

So far we have established the existence of a formal slow manifold in the infinite-
dimensional Vlasov-Maxwell phase space on which light waves are inactive. If a plasma’s
initial state is prepared to lie on this slow manifold, the ensuing plasma motion will
not emit light for some time, and in this sense will be dark. We deduced a heuristic
lower bound on the timescale over which darkness persists for optimally-dark initial
conditions in Section 2.4. In this section we will deduce the dynamical equations that
govern dynamics on the dark slow manifold, as well as their Hamiltonian structure.

In general, given a fast-slow system ǫ ẏ = fǫ(x, y), ẋ = gǫ(x, y) with formal slow
manifold y∗ǫ , dynamics on the slow manifold is governed by the system of equations
ẋ = gǫ(x, y

∗
ǫ (x)), which may be interpreted as a closure of the evolution equations for

the slow variables. While the right-hand-side of this evolution equation gǫ(x, y
∗
ǫ (x)) is

unwieldy since it is a formal power series, it can be truncated at any finite order in a
straightforward, if tedious manner. Such truncations provide approximate descriptions
of the slow dynamics.

The above method of describing slow manifold dynamics can be applied to dark
plasmas. However, doing so would ignore the fact that the dark slow manifold sits inside
of the Vlasov-Maxwell system, which is known to have a Hamiltonian structure (see
Morrison (1980) and Marsden & Weinstein (1982)). As discussed in MacKay (2004) and
Burby (2020a), when a slow manifold arises in a Hamiltonian system, the slow dynamics
naturally inherits a Hamiltonian structure of its own. Therefore a better method for
describing such dynamics is to derive this induced Hamiltonian structure, which in general
comprises a Hamiltonian functional and a Poisson bracket. Once this structure has been
identified, dynamics on the slow manifold may be recovered from Hamilton’s equations
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in Poisson bracket form. The benefit of this approach is that it enables truncating the
slow dynamics while preserving the underlying Hamiltonian structure. In contrast, the
naive truncation procedure above breaks the Hamiltonian structure in general.

Since the dark slow manifold depends on ǫ, the Hamiltonian and Poisson bracket
induced on the slow manifold must also depend on ǫ. Therefore expanding and truncating
the Poisson bracket form of the slow evolution equations in powers of ǫ necessarily involves
power series expansion and truncation of both the bracket and the Hamiltonian. This
complicates the task of developing Hamiltonian approximations of the slow dynamics
since a truncated power series expansion of the Poisson bracket need not satisfy the
Jacobi identity. (This follows from the quadratic dependence of the Jacobi identity
on the bracket.) To overcome this difficulty, we will apply the method introduced in
Burby (2017b) for describing the bracket on the slow manifold underlying the mag-
netohydrdynamic equations. In particular, we will apply a near-identity non-canonical
transformation to the slow manifold that causes the transformed Poisson bracket to have
a simple closed-form expression. We say that the transformation rectifies the bracket. We
will then define our approximate slow evolution equations in the transformed variables
by using the full transformed Poisson bracket, but a truncated transformed Hamiltonian.
In this way, we ensure that our approximate slow evolution equations comprise a genuine
Hamiltonian system.

In the remainder of this section, we will (3.1) supply some necessary mathematical
background, (3.2) explain how and why the slow manifold inherits a Hamiltonian struc-
ture, (3.3) derive the near-identity transformation that rectifies the slow-manifold Poisson
bracket, and finally (3.4) derive the transformed slow manifold Hamiltonian to the first
post-Darwin order. In this manner, we will provide the first dynamical description of dark
plasma dynamics that extends beyond the Darwin approximation. We warn the reader
that the discussion in this Section requires substantially more mathematical background
than previous Section. To alleviate some of this additional complexity, we recommend
consulting the review article by MacKay MacKay (2020), the excellent textbook by
Abraham and Marsden Abraham & Marsden (2008), the lectures on symplectic geometry
by da Silva da Silva (2008), as well as appendices A and C.

3.1. Mathematical Preliminaries

First we will review some well-known results from finite dimensional Lagrangian me-
chanics. For details see Morrison (1998); Cary & Brizard (2009); José & Saletan (1998);
Marsden & Ratiu (1999), for instance, although we follow slightly different conventions.
The Lagrangian for an individual charged particle moving in an electromagnetic field
may be written in the “phase space" form as

L =
(
p+

e

c
A
)
· ṙ−

(
e Φ(r) +

mv2

2

)
=: θB · ż−H(z), (3.1)

where we have introduced the Lagrange 1-form θB =
(
p+ e

cA
)
· dr and the phase space

coordinate z = (r,p). For review of differential forms for plasma physicist see MacKay
(2020). The symplectic 2-form on the momentum phase space associated with L can be
obtained via ωB = −dθB and has the form

ωB = dr ∧ dp+
e

c
dri ∧ drj

∂Ai

∂rj
(3.2)
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which leads to the symplectic version of Hamilton’s equations q̇ = ∂H/∂p and ṗ =
−∂H/∂q

ωB(ż, ·) ≡ iżωB = dH. (3.3)

The symplectic form can also be inverted to obtain the Poisson tensor

JB =

(
0 δij

−δij ǫijk
e

c
Bk

)
, (3.4)

and thus the Poisson bracket is

{f, g}:=
∂f

∂zα
Jαβ ∂g

∂zβ
=
∂f

∂r
·
∂g

∂p
−
∂g

∂r
·
∂f

∂p
+
eB

c
·
∂f

∂p
×
∂g

∂p
. (3.5)

For example in coordinates one recovers żα = {z,H} = Jαβ∂H/∂zβ. When B = 0, we
write θB = θ0= p · dr and we recover the canonical symplectic form ω0= −dθ0 = dr ∧ dp
and Poisson tensor J0.

Next we generalize to treat a distribution of particles. Neglecting the electromagnetic
field for now, the analogue of θB for an ensemble of charged particles, which we will
denote Θ, is a 1-form on the infinite-dimensional space of Lagrangian configuration maps

g : P̊ → P , (3.6)

where P̊ ∋ (r0,p0) denotes the space of particle labels and P ∋ (r,p) denotes the
Eulerian phase space. (We remark that, as sets, P̊ and P are the same. The notational
distinction reflects the different physical interpretations of particle locations and particle
labels.) In particular, using the notation introduced in Appendix A, we have

ιġΘg =

∫
ιV θ0 f d

3r d3p, (3.7)

where the Eulerian phase space velocity is given by V = ġ ◦g−1 and f is defined in terms
of g according to

f d3r d3p = g∗(f̊ d
3r0 d

3p0). (3.8)

Here f̊ is some fixed reference distribution on label space.
To find the symplectic form associated with Θ, we must compute the exterior derivative

Ω = −dΘ. We proceed by applying the formula (A 2) from Appendix A with α = Θ.
To begin, we introduce the functional I on the space of curves g(t) with g(−1) and g(1)

fixed whose value at g(t) is I(g) =
∫ 1

−1

∫
ιV θ0 f d

3r d3p dt. The first variation of I is given
by

δI(g)[δg] =

∫ 1

−1

∫
ιV ιξdθ0 f d

3r d3p dt, (3.9)

where ξ = δg ◦ g−1 and we have used the identities δV = ξ̇ + LV ξ and δ(f d3r d3p) =
−Lξ(f d

3r d3p), as in the Euler-Poincaré theory developed by Holm et al. (1998). Now
introducing g(t) and δg(t) as in Appendix A, the formula (A 2) implies

ιδg2 ιδg1Ωg = − lim
a→0

1

2a
δI(g)[I[−a,a]δg]

= − lim
a→0

1

2a

∫ a

−a

∫
ιV ιξdθ0 f d

3r d3p dt

= −

∫
ιξ2ιξ1dθ0 f d

3r d3p. (3.10)
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To invert the 2-form Ω and obtain the Poisson bracket {·, ·} on the space of Lagrangian
configuration maps, we first compute the general Hamiltonian vector field XF = ġF =
VF ◦ g associated with a real-valued Hamiltonian functional F (g). By definition, XF

satisfies

ιXF
Ω = dF. (3.11)

See Appendix A for a definition of exterior derivative of a scalar functional. In particular,
if W = δg = ξ ◦ g is any vector on g-space then we must have ιW ιXF

Ω = ιW dF . After
defining the functional derivative δF/δg according to

ιW dF =

∫
δF

δg
· δg f̊ d3r0 d

3p0, (3.12)

such that δF/δg is a 1-form at g(r0,p0), we therefore infer that Hamilton’s equation for
XF is equivalent to

∫
ιξιVF

ω0 f d
3r d3p =

∫
ιξ

(
δF

δg
◦ g−1

)
f d3r d3p, (3.13)

for each vector field ξ on the Eulerian phase space. Since f is positive everywhere, we
conclude XF is determined by

VF = J0 ·

(
δF

δg
◦ g−1

)
, (3.14)

where J0 is the Poisson tensor associated with ω0. The following manipulation now
immediately gives the Poisson bracket:

{G,F} = LXF
G

=

∫
δG

δg
· ġF f̊ d

3r0 d
3p0

=

∫ (
δG

δg
◦ g−1

)
· J0 ·

(
δF

δg
◦ g−1

)
f d3r d3p. (3.15)

Notice that if F (g) = F(g∗f̊ d
3r0 d

3p0) and G(g) = G(g∗f̊ d
3r0 d

3p0) for some real-valued
functionals F ,G on the space of volume forms then their Poisson bracket is given by

{G,F}(g) =

∫
d
δG

δf
· J0 · d

δF

δf
f d3r d3p = {F ,G}LP (g∗f̊ d

3r0 d
3p0), (3.16)

where {·, ·}LP is the well-known Lie-Poisson bracket on the space of volume forms.

Eq. (3.16) says that the mapping g 7→ g∗(f̊ d
3r0 d

3p0) is a Poisson map between the
space of Lagrangian configuration maps with the bracket {·, ·} and the space of volume
forms equipped with the Lie-Poisson bracket. We remark, however, that the image of this
Poisson map is not equal to the space of volume forms, since pushforward preserves the
total number of particles of f̊ .

We can repeat the above procedure for the full multi-species Vlasov-Maxwell system.
The infinite-dimensional phase space now comprises tuples of the form z = (gσ,A,E),
where gσ is the Lagrangian configuration map for species σ, A is the vector potential,
and E is the electric field. The space of all such z is denoted Z. In this case the Lagrange
one-form paired with the tangent vector ż := (ġσ, Ȧ, Ė) is

ιżθMV z =
∑

σ

∫
ιVσ

θBσfσ d
3r d3p−

1

4πc

∫
E · Ȧ d3r. (3.17)
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The formula (A 2) with α = θMV is then
implies that the symplectic form ΩMV = −dθMV is given by

ιδz2ιδz1ΩMV z =
∑

σ

∫
ιξσ2ιξσ1ωBσ fσ d

3r d3p

+
1

4πc

∫
(δE1 · δA2 − δE2 · δA1) d

3r

−
∑

σ

∫
eσ
c
(δA1 · ξ

r
σ2 − δA2 · ξ

r
σ1) fσ d

3r d3p. (3.18)

To find the general Hamiltonian vector field XF associated with a Hamiltonian
F (gσ,E,A), we first record the definition of the functional derivatives δF/δgσ, δF/δE,
and δF/δA:

ιδzdF =
∑

σ

∫
δF

δgσ
· δgσ f̊σ d

3r0 d
3p0 +

∫
δF

δE
· δE d3r +

∫
δF

δA
· δA d3r. (3.19)

Then we impose the condition ιδzιXF
ΩMV = ιδzdF for all vectors δz, which leads to the

following expression for XF = (VFσ ◦ gσ, ĖF , ȦF ):

VFσ = JBσ ·

(
δF

δgσ
◦ g−1

σ − 4πeσ
δF

δE
· dr

)
(3.20)

ĖF = −4π
∑

σ

eσ

∫ [
JBσ ·

(
δF

δgσ
◦ g−1

σ

)]r
fσ d

3p+ 4πc
δF

δA
(3.21)

ȦF = −4πc
δF

δE
. (3.22)

Finally, we again use the identity {G,F}MV = LXF
G = ιXF

dG to find that the Poisson
bracket for the Vlasov-Maxwell system is given by

{G,F}MV

=
∑

σ

∫ (
δG

δgσ
◦ g−1

σ − 4πeσ
δG

δE
· dr

)
· JBσ ·

(
δF

δgσ
◦ g−1

σ − 4πeσ
δF

δE
· dr

)
fσd

3r d3p

+ 4πc

∫ (
δG

δE
·
δF

δA
−
δG

δA
·
δF

δE

)
d3r (3.23)

This bracket is a special case of Eq. (3.252) in Burby (2015). It is related to the well-known
Morrison-Marsden-Weinstein bracket (see Morrison (1980) and Marsden & Weinstein
(1982)) on the space of tuples (fσ,E,B) by the Poisson mapping

(gσ,E,A) 7→ (gσ∗(f̊σ d
3r0 d

3p0),E,∇×A). (3.24)

As is well-known, the Hamiltonian for the Vlasov-Maxwell system is the sum of particle
and field energies,

HMV(gσ,E,A) =
∑

σ

∫
mσc

2 γσ fσ d
3r d3p+

1

8π

∫
(|E|2 + |∇ ×A|2) d3r, (3.25)

where γσ =
√
1 + |p|2/(mσc)2 is the Lorentz factor for species σ.

3.2. Why is Dark dynamics Hamiltonian?

We will now give a precise explanation for why plasma dynamics on the dark slow
manifold possess a Hamiltonian structure. Further discussion of Hamiltonian structure
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on slow manifolds more generally is found in the review articles MacKay (2004) and
Burby (2020a).

Suppose that (Z,Ω) is a symplectic manifold with symplectic form Ω. If Λ ⊂ Z is any

submanifold of Z with inclusion map IΛ : Λ → Z then Λ inherits a 2-form ΩΛ = I∗ΛΩ,
where I∗Λ denotes the pullback to Λ. This 2-form is closed since dΩΛ = dI∗ΛΩ = I∗ΛdΩ = 0,
which means that Λ is intrinsically a presymplectic manifold.† If ΩΛ happens to be non-
degenerate everywhere on Λ, then Λ is intrinsically a symplectic manifold. As explained in
Sniatycki (1974), the Poisson bracket induced by ΩΛ in the non-degenerate case coincides
with the well-known Dirac bracket for constrained mechanical systems; the submanifold
Λ represents the constraint.

If XH is a Hamiltonian vector field on (Z,Ω) and Λ is an invariant submanifold, then
XH is tangent to Λ and the induced vector field XHΛ on Λ is Hamiltonian with respect
to the presymplectic structure ΩΛ discussed above. To see this, first note that since XH

is Hamiltonian we have ιXH
Ω = dH in Z. Pulling back this equation to Λ along Iλ gives

ιXHΛ
ΩΛ = dHΛ where HΛ = I∗ΛH , which says that XHΛ is a Hamiltonian vector field

on Λ with Hamiltonian HΛ. In this sense, dynamics on invariant manifolds contained in
symplectic manifolds always inherit their own intrinsic Hamiltonian structure.

As we explained in Section 2.2, the Eulerian, gauge-invariant form of the Vlasov-
Maxwell system contains a (formal) invariant manifold S equal to the dark slow manifold.
We constructed S as the constraint set ET = E⋆

T (fσ,EL), B = B⋆
T (fσ,EL) inside of

(fσ,E,B)-space. Since the Eulerian, gauge-independent phase space (fσ,E,B) is related
to the Lagrangian, gauge-dependent phase space (gσ,E,A) by elimination of the gauge
and relabeling degrees of freedom, we may “undo" the gauge and relabeling symmetries
to construct an invariant manifold S̃ in z = (gσ,E,A)-space that projects onto the dark

slow manifold S. To wit, S̃ ⊂ Z is defined by the constraints AT = A⋆⋆
T (gσ,EL) and

ET = E⋆⋆
T (gσ,EL), where the slaving functions A⋆⋆

T and E⋆⋆
T are given by

A⋆⋆
T (gσ,EL) = A⋆

T (fσ,EL) (3.26)

E⋆⋆
T (gσ,EL) = E⋆

T (fσ,EL) (3.27)

gσ∗(f̊ d
3r0 d

3p0) = fσ d
3r d3p,

and A⋆
T (fσ,EL) is the unique transverse vector field on Q whose curl is B∗(fσ,EL).

Since we have already shown that the gauge-dependent, Lagrangian form of the Vlasov-
Maxwell system is a Hamiltonian system on the symplectic manifold (Z,ΩMV), the

preceding ramarks with Λ = S̃ imply that dark plasma dynamics (in gauge-dependent,
Lagrangian form) must possess an intrinsic Hamiltonian structure. As we will see, the

2-form on S̃ happens to be non-degenerate, which implies that the (all-orders) Poisson

bracket on S̃ is a Dirac bracket.

To compute this structure, we must find both the Hamiltonian HS̃ and the 2-form

ΩS̃ on S̃. To that end, we introduce the inclusion map IS̃ : (gσ,EL,AL) 7→ (gσ,E,A)
defined by

E = EL +E⋆
T (fσ,EL) (3.28)

A = AL +A∗
T (fσ,EL). (3.29)

Then we pull back the primitive 1-form θMV for ΩMV along IS̃ to obtain the Lagrange

† A presymplectic manifold is a smooth manifold equipped with a closed 2-form. A symplectic
manifold is a presymplectic manifold whose closed 2-form is non-degenerate.
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1-form θ⋆ for dark plasma dynamics:

ιẋθ
⋆
x =

∑

σ

∫ (
p+

eσ
c
AL +

eσ
c
A⋆

T

)
· V r

σ fσ d
3r d3p

−
1

4πc

∫
(EL · ȦL +E⋆

T ·DEL
A⋆

T [ĖL]) d
3r.

+
1

4πc

∑

σ

∫
(E⋆

T ·DfA
⋆
T [div(Vσfσ)]) d

3r (3.30)

Here x = (gσ,EL) parameterizes the dark slow manifold and Vσ , fσ are defined in terms
of gσ as in Section 3.1. We also pull back the Vlasov-Maxwell Hamiltonian along IS̃ to
obtain the Hamilton function H⋆ governing dark plasma dynamics:

H⋆(x) =
∑

σ

∫
mσc

2 γσ fσ d
3r d3p+

1

8π

∫
(|EL|

2 + |E⋆
T |

2 + |∇ ×A⋆
T |

2) d3r, (3.31)

The all-orders evolution equations for a dark plasma are then ẋ = XH⋆(x), where

ιXH⋆ dθ
⋆ = −dH⋆. (3.32)

We will refer to Eq. (3.32) as the dark-plasma Hamilton’s equations. We remark that the
preceding discussion implies the formula ẋ = XH⋆(x) for dynamics on the slow manifold
must be equivalent to the general formula for slow dynamics ẋ = gǫ(x, y

⋆
ǫ (x)) to all orders.

At this point, we could in principle compute the Poisson tensor associated with the
dark 2-form Ω⋆ = −dθ⋆ in order to express dark plasma dynamics in Poisson bracket
form. However, such a computation would not be compatible with our desire to identify
truncations of the formal power series XH⋆ that possess a Hamiltonian structure. The
essential issue is that the Poisson tensor associated with Ω∗ is an infinite formal power
series in 1/c, naive truncations of which will fail to satisfy the Jacobi identity. This makes
finding computable approximations of XH⋆ with a true Hamiltonian structure extremely
challenging. In the following subsection, we will therefore take a more nuanced approach
to expressing dark plasma dynamics as a Hamiltonian system that makes structure-
preserving truncation much simpler.

Our approach will follow the example set in Burby (2017b), where the same issue was
addressed in the context of the slow manifold underlying magnetohydrodynamics. In
particular, we will apply a near-identity non-canonical transformation T : x 7→ x on the
dark slow manifold that causes the power series expansion of Ω

⋆
= T∗Ω

⋆ to truncate at
finite-order. (In fact we will achieve Ω

⋆
= Ω

⋆

0 +
1
cΩ

⋆

1.) We say that the transformation T
rectifies the symplectic structure. This will allow us to identify a closed-form expression
for the dark Poisson bracket at the cost of introducing some additional complexity into
the dark Hamiltonian H

⋆
= T∗H

⋆. Then we will compute the power series expansion of
H

⋆
to the first post-Darwin order. By replacing H

⋆
with its post-Darwin approximation

in the dark Hamilton equation ιXH⋆
Ω

⋆
= dH

⋆
, while retaining the full (exact) form of

Ω
⋆
, we will obtain a computable post-Darwin Hamiltonian approximation of dark plasma

dynamics.

3.3. Derivation of the rectifying transformation

The Lagrange 1-form restricted to the dark slow manifold is given in Eq. (3.30). Note
that the “coordinates" we use on the dark slow manifold are x = (gσ,EL), where gσ is the
species-σ Lagrangian configuration map and EL is the longitudinal eletric field. Since the
constraint functions A⋆

T and E⋆
T that define the slow manifold are infinite formal power
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series in 1/c, it is clear that θ⋆ is also an infinite formal power series in 1/c. We wish to
change variables from x to x using a near-identity transformation T : x 7→ x such that
the power series defining the dark Lagrange 1-form truncates modulo exact 1-forms at
finite order when expressed in terms of x = (gσ,EL). We will call the transformation T
a rectifying transformation. We work modulo addition of exact 1-forms to θ⋆ because it
is only the dark 2-form Ω⋆ = −dθ⋆ that is physically important.

It may not be immediately clear why it should be possible to find a rectifying trans-
formation. The explanation dwells in the fact that symplectic manifolds have no local
invariants. This should be contrasted with Riemannian geometry, where the curvature
tensor is a local invariant; curvature cannot be eliminated by a coordinate transforma-
tion. Thus, symplectic manifolds satisfy the Darboux theorem, which says that, locally,
all symplectic forms are related by coordinate transformations. While existence of a
rectifying transformation, which we require to be globally defined, is not implied directly
by the Darboux theorem, one can prove existence of such a transformation (as a formal
power series) using the idea underlying Moser’s celebrated proof of the Darboux theorem.
See Burby (2017b) for details.

In order to streamline our derivation, we represent T as a composition of formal Lie
transforms, i.e.

T = · · · ◦ exp(G3) ◦ exp(G2) ◦ exp(G1), (3.33)

where the Gk are vector fields on x-space (not to be confused with the x-space Q!) that
we allow to be formal power series in 1/c. To specify T , we will derive formulas for the
Gk. Our derivation will be facilitated by the well-known expression for the pushforward
of a differential form α along a Lie transform exp(G):

exp(G)∗α = α− LGα+
1

2
L2
Gα−

1

6
L3
Gα+ . . . (3.34)

In order to work with these infinite-dimensional Lie transforms explicitly, we will always
compute Lie derivatives by first applying Cartan’s identity LG = ιGd+dιG and then using
the formalism described in Appendix A for computing exterior derivatives on infinite-
dimensional spaces.

The first step in our derivation is to list the leading five terms in the power series
expansion of the (pre-transformed) dark Lagrange 1-form θ⋆. We have θ⋆ = θ⋆0 + c

−1 θ⋆1 +
c−2θ⋆2 + . . . with

ιẋθ
⋆
0 x =

∑

σ

∫
p · V r

σ fσ d
3r d3p (3.35)

ιẋθ
⋆
1 x =

∑

σ

∫
eσAL · V r

σ fσ d
3r d3p−

1

4π

∫
EL · ȦL d

3r (3.36)

ιẋθ
⋆
2 x =

∑

σ

∫
eσA

⋆
T1 · V

r
σ fσ d

3r d3p (3.37)

ιẋθ
⋆
3 x = 0 (3.38)

ιẋθ
⋆
4 x =

∑

σ

∫
eσA

⋆
T3 · V

r
σ fσ d

3r d3p+
1

4π

∑

σ

∫
E⋆

T2 ·DfσA
⋆
T1[div(Vσfσ)] d

3r (3.39)

where we have used A⋆
T0 = A⋆

T2 = E⋆
T0 = E⋆

T1 = 0 and DEL
A⋆

T1 = 0. Higher-order
contributions to θ⋆ will not be necessary in our analysis. With the help of (2.33) the
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second term of (3.39) can be written as

∑

σ

4πeσ
mσ

∫
fσ ιVσ

d
(
p ·∆−1E⋆

T2

)
, (3.40)

where we have re-written 6-dimensional divergence as a Lie derivative and used the
Cartan identity. Next we record formulas for the exterior derivatives of θ⋆k for k = 0, . . . , 3.
(We will not need dθ⋆4 .) In deriving these formulas, we reuse the procedure from Appendix
A for computing exterior derivatives in infinite dimensions.

ιδx2ιδx1dθ
⋆
0 x =

∑

σ

∫
ιξσ2ιξσ1dθ0 fσ d

3r d3p (3.41)

ιδx2ιδx1dθ
⋆
1 x =

∑

σ

∫
eσ (δAL1 · ξ

r
σ2 − δAL2 · ξ

r
σ1) fσ d

3r d3p

−
1

4π

∫
(δEL1 · δAL2 − δEL2 · δAL1) d

3r (3.42)

ιδx2ιδx1dθ
⋆
2 x =

∑

σ

∫
eσB

⋆
1 · ξ

r
σ1 × ξrσ2 fσ d

3r d3p

+ 4π

∫ (∑

σ

eσ
mσ

∇ ·

∫
ξrσ1p fσ d

3p

)
·∆−1ΠT

(
∑

σ

eσ

∫
ξrσ2 fσ d

3p

)
d3r

− 4π

∫ (∑

σ

eσ
mσ

∇ ·

∫
ξrσ2p fσ d

3p

)
·∆−1ΠT

(
∑

σ

eσ

∫
ξrσ1 fσ d

3p

)
d3r

− 4π

∫ (∑

σ

eσ
mσ

∫
ξpσ1 fσ d

3p

)
·∆−1ΠT

(
∑

σ

eσ

∫
ξrσ2 fσ d

3p

)
d3r

+ 4π

∫ (∑

σ

eσ
mσ

∫
ξpσ2 fσ d

3p

)
·∆−1ΠT

(
∑

σ

eσ

∫
ξrσ1 fσ d

3p

)
d3r (3.43)

ιδx2ιδx1dθ
⋆
3 x = 0. (3.44)

We now determine G1

by requiring it solves the linear equation

ιG1dθ
⋆
0 + c−1ιG1dθ

⋆
1 = c−2θ⋆2 . (3.45)

The steps necessary in inverting this equation have be outlined in equations (3.14), (3.20), (3.21)
and (3.22). (The reason for this choice of G1 will become clear soon.) Using the formulas
(3.41), (3.42), and (3.37), we find that G1 = (Yσ1 ◦ gσ, G

EL

1 , GAL

1 ) is given by

Yσ1 =
eσ
c2

A⋆
T1 · ∂p (3.46)

GEL

1 = 0 (3.47)

GAL

1 = 0. (3.48)

Since G1 is O(c−2) and satisfies Eq. (3.45), the pushforward of θ⋆ along the Lie transform
exp(G1) has the power series expansion

exp(G1)∗θ
⋆ = θ⋆0 + c−1θ⋆1 + c−4θ⋆4 −

1

2
c−2 ιG1dθ

⋆
2 +O(c−5), (3.49)

where we have used our freedom to add exact differentials to the Lagrange 1-form in
order to make the replacement exp(G1)∗ = exp(−LG1) → exp(−ιG1d). Thus, if we were
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to stop here and set Gk = 0 for k > 1 we would have succeeded in making the difference
between the transformed Lagrange 1-form θ

⋆
and θ⋆0 + c−1θ⋆1 one order higher than prior

to applying the transformation.
Finally, we turn to determining the Gk for k > 1. Since the first Lie transform,

generated by G1, brought the Lagrange 1-form closer to θ⋆0 + c−1 θ⋆1 , we will select the
higher Gk so that the transformed Lagrange form is equal to θ⋆0 + c−1 θ⋆1 to all orders
in 1/c. We give an inductive proof in Appendix C that this can indeed be done. For
the purposes of this Article, it is only necessary for us to explicitly perform the algebra
that determines G2. However, all subsequent Gk may be determined in a similar manner.
(The tedium of the required algebraic manipulations quickly becomes unreasonable for
k > 2.)

In keeping with the above strategy, we demand that G2 satisfies the linear equation

ιG2dθ
⋆
0 + c−1ιG2dθ

⋆
1 = c−4θ⋆4 −

1

2
c−2ιG1dθ

⋆
2 . (3.50)

What remain is to estimate the last term. From the last four formidable-looking lines
of (3.43), only the third one will contribute to the final result because of the form of
G1 as we see from the equation (3.50). Using formulas (3.41), (3.42), (3.39), (3.40) and
(3.43), we find the solution G2 = (Yσ2 ◦ gσ, G

EL

2 , GAL

2 ) is given by

Yσ2 =
eσ
c4

[
A⋆

T3 +∇

(
p

mσ
·∆−1E⋆

T2

)
+

1

2
∆−1ΠTω

2
pA

⋆
T1

]
·
∂

∂p

−
1

c4

[
eσ
mσ

∆−1E⋆
T2

]
·
∂

∂r
(3.51)

GEL

2 =
1

c4
ΠLω

2
p∆

−1E⋆
T2 (3.52)

GAL

2 = 0. (3.53)

These formulas show in particular that G2 = O(c−4). Since it can be shown that Gk =
O(c−5) for k > 2, this, together with Eq. (3.50) implies

θ
⋆
= θ⋆0 + c−1 θ⋆1 +O(c−5), (3.54)

consistent with our claim that θ
⋆
= θ⋆0 + c−1 θ⋆1 to all orders in 1/c.

To summarize, we have identified a near-identity non-canonical transformation on
the dark slow manifold that rectifies the dark Poisson bracket. Using the variables
(gσ,EL,AL) to parameterize the slow manifold, the transformation is given explicitly
to O(c−4) by

AL = AL (3.55)

EL = EL −
∑

σ

1

c4
ΠLω

2
pσ∆

−1E
⋆

T2 +O(c−5) (3.56)

fσ = fσ +
eσ
c2

A
⋆

T1 · ∂pfσ +
1

2

e2σ
c4

A
∗

T1A
∗

T1 : ∂2pfσ

+
eσ
c4

[
A

⋆

T3 +
1

2
∆−1ΠTω

2
pA

⋆

T1 +∆−1∇
p · E

⋆

T2

mσ

]
· ∂pfσ

−
eσ
mσc4

∆−1E
⋆

T2 · ∇fσ +O(1/c5). (3.57)

These formulas follow from the definition of a Lie transform; if G = (Yσ ◦ gσ, G
EL , GAL)
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is the Lie generator then exp(G)(gσ ,EL,AL) = (gσ,EL,AL) is the λ = 1 solution of the
system of evolution equations

dgσ
dλ

= Yσ ◦ gσ,
dEL

dλ
= GEL ,

dAL

dλ
= GAL . (3.58)

After applying this rectifying transformation, the dark Lagrange 1-form is given by θ
⋆
=

θ⋆0+c
−1 θ⋆1 to all orders in 1/c. Therefore the (rectified) dark symplectic form −dθ

⋆
= Ω

⋆
is

given by

ιδx2ιδx1Ω
⋆
=
∑

σ

∫
ω0[ξσ1, ξσ2] fσ d

3r d3p+
1

4πc

∫
(δEL1 · δAL2 − δEL2 · δAL1) d

3r

−
∑

σ

∫
eσ
c
(δAL1 · ξ

r
σ2 − δAL2 · ξ

r
σ1) fσ d

3r d3p, (3.59)

and the associated dark Poisson bracket is

{F ,G}⋆ =
∑

σ

∫
d6z fσ

[
δF

δgσ
◦ g−1

σ − 4πe
δF

δEL
· dr

]
· J0 ·

[
δG

δgσ
◦ g−1

σ − 4πe
δG

δEL
· dr

]

+ 4πc

∫
d3r

(
δF

δEL
·
δG

δAL
−
δG

δEL
·
δF

δAL

)
. (3.60)

We remark that the functional derivative with respect to a longitudinal vector field
is defined (consistently and in accordance with the standard mathematical notion of
functional derivative) to be a longitudinal vector field. Therefore in particular if W is
some vector field then δ/δEL

∫
EL · W d3r = ΠLW, not W. We also remark that the

bracket {·, ·}⋆ is written in terms of Lagrangian configuration maps; the corresponding
Eulerian bracket is

{F ,G}Dark =
∑

σ

∫
d6z fσ

[
d
δF

δfσ
− 4πe

δF

δEL
· dr

]
· J0 ·

[
d
δG

δfσ
− 4πe

δG

δEL
· dr

]

+ 4πc

∫
d3r

(
δF

δEL
·
δG

δAL
−
δG

δEL
·
δF

δAL

)
. (3.61)

3.4. Derivation of the post-Darwin Hamiltonian

In the previous subsection we succeeded in identifying a rectifying transformation that
allowed us to find a closed-form expression for the Poisson bracket on the slow manifold.
We are now in position to derive approximations of the dark plasma evolution equations
that possess a Hamiltonian structure. The remaining step is to derive a formula for the
slow manifold Hamiltonian expressed in terms of the rectified variables (gσ,EL,AL).

The purpose of this section is to derive that Hamiltonian H
⋆

to the first post-Darwin
order. Our post-Darwin approximation to dark plasma dynamics is then defined by the
Hamilton equation ẋ = {x,H

⋆

PD}Dark, where H
⋆

PD is the post-Dawin Hamiltonian and
the rectified dark Poisson bracket is given in Eq. (3.60).

The original Hamiltonian (3.25) reads

H⋆(fσ,EL) =
∑

σ

∫
d6z fσγσmσc

2 +
1

8π

∫
d3r

(
E2

L + E⋆2
T +B⋆2

)
(3.62)

and can be expended in powers of 1/c as H⋆(f, EL) = c2H⋆
−2 + H⋆

0 + c−2H⋆
2 + c−4H2
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with the two lowest order terms given as

H⋆
−2 =

∑

σ

∫
d6z fσmσc

2, H⋆
0 =

∑

σ

∫
d6z

fσp
2

2mσ
+

1

8π

∫
d3r E2

L, (3.63)

the (quadratic in fσ) Darwin terms given as

H⋆
2 = −

∑

σ

∫
d6z

fσp
4

8m3
σ

+
1

8π

∫
d3r B⋆2

1 , (3.64)

and the “piezoelectric terms" given as

H⋆
4 =

∑

σ

∫
d6z

fσp
6

16m5
σ

+
1

8π

∫
d3r |E⋆

T2|
2 +

1

4π

∫
d3rB⋆

1 ·B
⋆
3. (3.65)

Note that the second term in H⋆
4 is quadratic in fσ, while the last term is cubic. The cubic

term, which involves B⋆
3 appears particularly formidable. (C.f. Eq. (2.46)). As we will

soon see, much of the complexity introduced by this term is eliminated by the rectifying
transformation (3.57). Also note that we are free to remove the rest-energy term H⋆

−2

since it is a Casimir.
By defining πσ := p − eσ

c2 A
⋆
T1 and substituting the inverse transformation formulas

(3.55)-(3.57) into the Hamiltonian on the slow manifold, we obtain the following expres-
sion for the post-Darwin Hamiltonian in terms of the rectified variables (EL,AL, fσ)

H
⋆

PD(EL, fσ) =
∑

σ

∫ (
|πσ|

2

2mσ
−

|πσ|
4

8m3
σc

2
+

|πσ|
6

16m5
σc

4

)
fσ d

3r d3p

−
2π

c2

∫ [
ΠTJ0 +ΠT

ω2
p

c2 ∆
−1ΠTJ0

]
∆−1

[
ΠTJ0 +ΠT

ω2
p

c2 ∆
−1ΠTJ0

]
d3r

−
1

8πc4

∫
|E

⋆

T2|
2 d3r +

1

8π

∫
|EL|

2 d3r +
2π

c4

∫
ω2
p |∆

−1ΠTJ0|
2 d3r, (3.66)

where special care was made to write the expression so that it is manifestly positive-
definite. The integrand on the first line comprises the first three non-constant terms of the
Taylor expansion of

√
1 + |πσ|2/m2

σc
2, which is readily seen to be positive. The second

line involves a O(c−6) term which will be dropped below to obtain the 1/c expansion
of the equations of motion, but otherwise it is quartic in f . Modulo O(c−6) terms, the
second line and the last term in the third line can be condensed into

−
1

8πc2

∫
d3rA

⋆

T1 ·

(
∆+

ω2
p

c2

)
A

⋆

T1. (3.67)

If we combine everything together and take variational derivatives we get

δH
⋆

PD

δfσ

=
p2

2mσ
−

p4

8m3
σc

2
+

p6

16m5
σc

4
−
eσp ·A⋆

T1

mσc2

(
1−

p2

2m2
σc

2

)

+
4πeσ
mσc4

p ·∆−1ΠT J2−
eσ
c4

(
pp

mσ
2
: ∆−1∇E

⋆

T2 +
eσ
mσ

EL ·∆−1E
⋆

T2

)
, (3.68)

where the square roots indicate the expansion introduced in (3.66) and we have used
equation (2.30), while the variational derivative with respect to the other remaining slow
variable reads

δH
⋆

PD

δEL

=
EL

4π
−

1

4πc4
ΠLω

2
p∆

−1E
⋆

T2 (3.69)
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This completes the derivation of the post-Darwin Hamiltonian.
Using the Poisson bracket (3.61), the corresponding equations of motion on the slow

manifold are

∂tfσ +∇ ·

([
∂p
δH

⋆

PD

δfσ

]
fσ

)
+ ∂p ·

([
4πeσ

δH
⋆

PD

δEL
−∇

δH
⋆

PD

δfσ

]
fσ

)
= 0 (3.70)

∂tEL + 4πΠL

∑

σ

eσ

∫ (
∂p
δH

⋆

PD

δfσ

)
fσ d

3p = 4πc
δH

⋆

PD

δAL

(3.71)

∂tAL = −4πc
δH

⋆

PD

δEL

. (3.72)

Note that sinceH
⋆

PD is independent of AL Eq. (3.71) reproduces the longitudinal Ampère
equation, which is equivalent to the preservation of Gauss’s Law. This result will persist
to all orders in c−1 as a result of the gauge invariance of the rectifying transformation. For
the same reason, Eqs. (3.70) and (3.71) comprise a closed system of evolution equations for
the distribution function fσ and the longitudinal electric field EL. As such, the evolution
equations for dark manifold dynamics may be written in terms of the same dependent
variables used in the Vlasov-Poisson system.

3.5. On the Hamiltonian nature of Darwin’s approximation

We can collect all terms up to 1/c2 obtained in the previous section to get the
transformed Darwin’s Hamiltonian

H
⋆

D(fσ,EL) =
∑

σ

∫
d6z

fσp
2

2mσ
+

1

8π

∫
d3r E

2

L

−
∑

σ

∫
d6z

fσp
4

8m3
σc

2
+

2π

c2

∫
d3r J0 ·∆

−1ΠT J0, (3.73)

We note here that, to this order, the transformations (3.57) amount to a transformation
from kinetic to canonical momentum.

While the Hamiltonian approach to post-Darwin’s extension appears to be new, there
is an instance of a Hamiltonian study of Darwin’s approximation found in literature,
namely Krause et al. (2007). In particular, in this work action principles for the Darwin
approximation in the Vlasov context were presented. However, the phase space only
spans the field of density functions f , so that the Lie-Poisson structure is that of a
Vlasov-Poisson bracket

{F,G}D =

∫
d6ζfD

[
δF

δfD
,
δG

δfD

]
(3.74)

which naturally produces Vlasov equation ∂fD/∂t = {fD, H} when equipped with the
Hamiltonian

H [fD] =

∫
d6ζfD(ζ, t)

[
π2

2m
−

π4

8m3c2

]

+
e2

2

∫
d6ζ

∫
d6ζ′fD(ζ, t)fD (ζ′, t)K (r|r′)

−
e2

2m2c2

∫
d6ζ

∫
d6ζ′fD(ζ, t)fD (ζ′, t)Kij (r|r

′)πiπ
′
j ,

(3.75)

where πi correspond to eulerianized full canonical momenta. To make a further
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comparison we recognize from eqs. (15), (16) and (23) of Krause et al. (2007) that∫
d3r′Kij (r|r

′) ≡ −4π∆−1ΠT and that they have single species. In addition, in our case
(eq. (3.66)), π is a kinetic momentum up to O(1/c2), since the active transformations
we performed in (3.57) can be viewed as a passive relabeling transformation in p. So the
πi in Krause et al. (2007) correspond to our new p and not π

It is straightforward to recover this Hamiltonian formulation of the Darwin equation
from ours by restricting to a level set of the momentum map associated with gauge
symmetry (i.e. the residual of Gauss’s Law) and then quotienting by translations in AL.

4. Conclusion

In this article we applied slow manifold reduction to a particular non-relativistic scaling
of the Maxwell–Vlasov system. The main motivation was to develop a Hamiltonian post-
Darwin approximation. In the process we obtained the Braginskii pressure tensor in the
second order and curiously static magnetic field response to the heat flux tensor.

Another, and perhaps more important application of these Hamiltonian asymptotics
concerns numerical calculations. Previously, various numerical integrators have bene-
fited from Darwin’s approximation in convergence of their algorithms. For instance,
Chen & Chacón (2015) introduce a conservative, nonlinearly implicit PIC algorithm for
the Vlasov–Darwin system. The motivation was avoiding spurious radiative noise present
in fully implicit, energy conserving Maxwell–Vlasov implementations, when employing
large implicit timesteps for multiscale, lowfrequency problems. The second order expan-
sion that we obtained can be applied in the same spirit as Darwin’s approximation in
order to reduce the integration time of Vlasov codes/ (particle-in-cell) PIC simulations
but with greater fidelity.

The Poisson bracket describing dark plasma dynamics is defined a priori as an infinite
formal power series. This is problematic from a practical point of view since truncating the
series will violate the Jacobi identity in general. Following Burby (2017b), we overcame
this difficulty by applying a non-canonical near-identity transformation to the dark slow
manifold that caused the transformed slow-manifold Poisson bracket to truncate exactly
at finite order. Conveniently, this transformed bracket agreed with a well-known bracket
for the Vlasov-Poisson system. An alternative approach to achieving the same result
would be to apply canonical near-identity transformations to the full Maxwell–Vlasov
phase space as in Brizard & Chandre (2020) in order to make the dark slow manifold
truncate at finite order. A benefit of this alternative approach is that it would facilitate
the analysis of Maxwell–Vlasov dynamics on and near the slow manifold, i.e. “dim"
plasma dynamics. We plan to pursue this idea in future work.

There are further avenues to extend this line of research. As mentioned above one can
attempt to construct structure preserving algorithms for PIC simulations which reduce
the integration times. This would thus require discretization techniques, which can be
performed directly within the Hamiltonian action principle formalism. In the infinite
dimensional case, as usual, with the noncanonical Hamiltonian formulation, energy-
Casimir method comes to mind, which permits comprehensive study of the stability. In
addition, one can envision the utility of the integral transform methods to the Darwinian
and Piezoelectric approximations. Integral transforms, such as G-transform were applied
earlier to simplify the dynamics of Vlasov-Poisson in case of collisions present in the
system by Heninger & Morrison (2018).
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Appendix A. Differential forms on infinite-dimensional manifolds

On finite-dimensional spaces, computations with differential forms may be reduced
to repeated applications of the identity d(f dg) = df ∧ dg, for scalar functions f, g. For
example, if α is a 1-form then its exterior derivative may be computed by first introducing
coordinates xi, framing the cotangent bundle using the coordinate differentials dxi, and
then applying the aformentioned identity according to dα = d(αidx

i) = dαi ∧ dxi =
∂jαi dx

j ∧ dxi, where αi denote the component functions of α in the basis dxi. Lie
derivatives LX along a vector field X may also be computed using this rule by first
applying the Cartan formula LXλ = ιXdλ+ d(ιXλ), where λ is any differential form.

On infinite-dimensional spaces, however, the identity d(f dg) = df ∧ dg is less useful
for computing with forms. The essential issue is that the introduction of coordinates
xi is, at best, more challenging in infinite-dimensions. On linear function spaces, one
might occasionally employ Fourier coefficients, or some other well-known basis coefficients
successfully as coordinates. But constructing coordinates on nonlinear spaces such as the
group of diffeomorphisms g of a fixed manifold M is much more involved. It would
therefore be useful to develop a coordinate-independent formalism for computing with
differential forms. Such a formalism would apply uniformly across finite-dimensional and
infinite-dimensional spaces, at least at a formal level. The purpose of this appendix is to
supply one such formalism, which is applied elsewhere in this Article.

For the purposes of this Article, it is sufficient to discuss only scalars (0-forms) F ,
1-forms α, and the corresponding exterior derivatives dF, dα. We assume these objects
are defined on a manifold M with points m, tangent spaces TmM , and tangent vectors
δm ∈ TmM .

Exterior derviative of a 0-form: The exterior derivative of a 0-form F is a 1-form
dF . Thus, dF assigns a linear functional dFm : TmM → R to each point m ∈ M . If
δm ∈ TmM is a tangent vector at m we denote the value of dFm applied to δm as
ιδmdFm ∈ R. To define dF , it is sufficient to specify the value of ιδmdFm for arbitrary m
and δm. To that end, we choose a curve c(t) ∈ M such that c(0) = m and c′(0) = δm,
where c′(t) denotes the velocity of c(t). The value of ιδmdFm is then given by

ιδmdFm:=
d

dt

∣∣∣∣
0

F (c(t)). (A 1)
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Exterior derivative of a 1-form: The exterior derivative of a 1-form α is a 2-form
dα. Thus, dα assigns a skew-symmetric bilinear functional dαm : TmM × TmM → R

to each point m ∈ M . If δm1, δm2 are two tangent vectors at m, we denote the value
of dαm applied to the pair (δm1, δm2) as ιδm2 ιδm1dαm. Note that skew-symmetry
implies ιδm2ιδm1dαm = −ιδm1ιδm2dαm. To define dαm, it is sufficient to specify the
value of ιδm2ιδm1dαm for arbitrary m and (δm1, δm2). To that end, we introduce the
functional I on the space of curves c(t) ∈ M with c(−1) and c(1) fixed whose value at

c is I(c):=
∫ 1

−1 ιc′(t)αc(t) dt. We also introduce a given curve c(t) ∈ M with c(0) = m
and c′(0) = δm2, and a vector field δc(t) along c(t) with δc(0) = δm1, δc(−1) = 0, and
δc(1) = 0. Then we define

ιδm2 ιδm1dαm:= lim
a→0

1

2a
δI(c)[I[−a,a]δc], (A 2)

where δI(c)[δc] denotes the first variation of I at c in the direction δc, and I[−a,a] :
[−1, 1] → R denotes the indicator function for the interval [−a, a].

In finite dimensions, the formula (A 2) recovers the usual definition of exterior deriva-
tive because

lim
a→0

1

2a
δI(c)[I[−a,a]δc] = lim

a→0

1

2a

∫ a

−a

ιc′(t)ιδc(t)dαc(t) dt

= ιc′(0)ιδc(0)dαc(0)

= ιδm2ιδm1dαm

where we have used the indicator function to change the limits of integration and the
Lebesgue differentiation theorem to evaluate the limit a → 0. In infinite dimensions,
(A 2) is useful because it does not require parameterizing M with any linear space, as
the following example illustrates.

Example on the diffeomorphism group We will illustrate how the formula (A 2) may be
used to compute exterior derivatives when working on the diffeomorphism group of a
fixed manifold P .

If g : P → P is a diffeomorphism then a tangent vector at g is a map δg that assigns
to each p ∈ P a tangent vector at g(p), i.e. δg(p) ∈ Tg(p)P . Note that if δg is a tangent
vector at g, then ξ = δg ◦ g−1 defines a vector field on P , since ξ(p) = δg(g−1(p)) ∈
Tg(g−1(p))P = TpP .

Let θ be a 1-form on P . Given a volume form ρ on P , we may define a 1-form α on
the diffeomorphism group using the formula

ιδgαg =

∫
ιξθ ρ. (A 3)

Here ξ = δg ◦ g−1, as in the previous paragraph. We would like to compute the exterior
derivative of α. In order to use the formula (A 2), we start by introducing a functional
I defined on the space of curves g(t) in the diffeomorphism group with g(−1) and g(1)

fixed. The value of I at g(t) is I(g) =
∫ 1

−1

∫
ιV (t)θ ρ dt, where we have introduced the

notation V (t) = (∂tg(t)) ◦ (g(t))
−1. The first variation of I is given by

δI(g)[δg] =

∫ 1

−1

∫
ι∂tξ+LV ξθ ρ dt

=

∫ 1

−1

∫
ι[V,ξ]θ ρ dt,
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where we have used ι∂tξθ ρ = ∂t(ιξθ ρ) and ξ(−1) = ξ(1) = 0. Next we introduce
• δg1, δg2: tangent vectors to the diffeomorphism group at g
• g(t): a curve of diffeomorphisms with fixed end points and g′(0) = δg2
• δg(t): a vector field along the curve g(t) with δg(0) = δg1, δg(−1) = 0, and δg(1) = 0,

and apply the formula (A 2) to obtain

ιδg2ιδg1dαg = lim
a→0

1

2a
δI(g)[I[−a,a]δg]

= lim
a→0

1

2a

∫ a

−a

∫
ι[V (t),ξ(t)]θ ρ dt

=

∫
ι[V (0),ξ(0)]θ ρ

= −

∫
ι[ξ1,ξ2]θ ρ. (A 4)

It is instructive to compare this calculation with the calculation of dΘ in Section 3.1.
Note in particular that the two calculations do not, and should not give the same result.

Appendix B. Helmholtz-Hodge decomposition

This appendix contains a reference discussion of transverse, longitudinal, and harmonic
subspaces. We will present the picture for both forms and vector fields in parallel. The
fundamental theorem of Hodge theory states that the space of k-forms Ωk on any closed
(compact, without boundary) Riemannian manifold M is equal to the L2-orthogonal
direct sum Ωk = dΩk−1 ⊕ d∗Ωk+1 ⊕Ωk

H , where

ΩH = {α ∈ Ωk | dα = 0, d∗α = 0}. (B 1)

We say dΩk−1 is the space of exact k-forms, d∗Ωk+1 is the space of coexact k-forms, and
Ωk

H is the space of harmonic k-forms. The operator d∗ is the formal adjoint of d relative
to the L2 inner product of forms.

General formulas for the orthogonal projection operators into the terms of the sum
dΩk−1⊕d∗Ωk+1⊕Ωk

H may be derived as follows. Suppose we have a k-form α = αE+αC+
αH , where E,C,H denote the exact, coexact, and harmonic parts of α, respectively. To
find the exact component, we first note that the codifferential of α is given by d∗α = d∗αE .
Next we note that αE = dλC , where λC is some coexact k − 1 form. We may therefore
infer

d∗α = d∗dλC = (d∗d+ dd∗)λC = ∆λC , (B 2)

where ∆ is the Laplace-De Rham operator. When restricted to dΩk−1 ⊕ d∗Ωk+1, ∆ has
a well-defined inverse. We may therefore solve Eq. (B 2) uniquely for λC according to
λC = ∆−1d∗α. This argument, together with an analogous argument for the coexact
part of α, shows that the exact and coexact projections, ΠE , ΠC are given by

ΠEα = d∆−1d∗α = ∆−1dd∗α (B 3)

ΠCα = d∗∆−1dα = ∆−1d∗dα. (B 4)

Now let’s translate this in terms of vector calculus notation assuming dimM = 3. I
will treat the cases k = 1 and k = 2 separately.

Every form α in Ω1 may be identified with a unique vector field u using the invertible
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mapping from vector fields to 1-forms u 7→ u · dr. When either the differential or the
codifferential is applied to a 1-form, the result is

d(u · dr) = ι∇×ud
3r (B 5)

d∗(u · dr) = −∇ · u. (B 6)

The Laplace-De Rham operator on 1-forms may therefore be written

∆(u · dr) = −d∇ · u+ d∗ι∇×ud
3r

= −∇(∇ · u) · dr + (∇× (∇× u)) · dr

= −(∇2u) · dr. (B 7)

Every form β in Ω2 may be identified with a unique vector field u using the invertible
mapping from vector fields to 2-forms u 7→ ιud

3r. When either the differential or the
codifferential is applied to a 2-form, the result is

d(ιud
3r) = ∇ · u d3r (B 8)

d∗(ιud
3r) = ∇× u · dr. (B 9)

The Laplace-De Rham operator on 2-forms may therefore be written

∆(ιud
3r) = d(∇× u · dr) + d∗(∇ · ud3r)

= ι∇×(∇×u)d
3r − ι∇(∇·u)d

3r

= −ι∇2
u
d3r. (B 10)

According to the fundamental theorem of Hodge theory, the preceding remarks imply
that the space of vector fields admits two decompositions, one induced by the Hodge
decomposition for 1-forms, and the other induced by the Hodge decomposition for 2-
forms. The following argument shows that these two decompositions are essentially the
same.

First consider the Hodge decomposition for 1-forms Ω1 = dΩ0 ⊕ d∗Ω2 ⊕ Ω1
H . The

mapping u 7→ u · dx is a linear isometry between Ω1 and the space of vector fields X.
Therefore there is a corresponding L2-orthogonal decomposition X = X

1
E ⊕ X

1
C ⊕ X

1
H .

The space X
1
E contains all vector fields of the form u = ∇φ, where φ is a scalar field. The

space X
1
C contains all vector fields of the form u = ∇×A, where A is a vector field. The

space X
1
H contains all vector fields with vanishing divergence and curl. The orthogonal

projections onto these spaces are given by

Π1
Eu =∇[∇2]−1∇ · u = [∇2]−1∇(∇ · u) (B 11)

Π1
Cu =−∇× ([∇2]−1∇× u) = −[∇2]−1∇× (∇× u) (B 12)

Now consider the Hodge decomposition for 2-forms Ω2 = dΩ1 ⊕ d∗Ω3 ⊕ Ω2
H . The

mapping u 7→ ιud
3x is a linear isometry between Ω2 and the space of vector fields X.

Therefore there is a corresponding L2-orthogonal decomposition X = X
2
E ⊕ X

2
C ⊕ X

2
H .

The space X
2
E contains all vector fields of the form u = ∇ × A, where A is a vector

field. The space X
2
C contains all vector fields of the form u = −∇φ, where φ is a scalar

field. The space X
2
H contains all vector fields with vanishing divergence and curl. The

orthogonal projections onto these spaces are given by

Π2
Eu =−∇× ([∇2]−1∇× u) (B 13)

Π2
Cu =∇[∇2]−1∇ · u (B 14)
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Note that we have

X
1
E = X

2
C , X

1
C = X

2
E , (B 15)

and

Π1
E = Π2

C , Π1
C = Π2

E . (B 16)

Therefore the only difference between the orthogonal decompositions induced by the
Hodge decomposition for 1-forms and the Hodge decomposition for 2-forms is a naming
convention. According to the 1-form decomposition, the gradients are exact while the
curls are coexact. According to the 2-form decomposition, the curls are exact while the
gradients are coexact. (This is actually an overstatement. When properly formulated in
terms of Sobolev spaces, the two Hodge decompositions actually give slightly different
decompositions for vector fields. The 1-form decomposition expresses a vector field as
the sum of a strong gradient, a weak curl, and a Harmonic field, while the 2-form
decomposition expresses a vector field as the sum of a strong curl, a weak gradient,
and a Harmonic field. This distinction will not play an important role in this work.)

In light of the previous remarks, it is convenient to introduce a separate notation for
the decomposition of vector fields. We write XL = X

1
E = X

2
C for the transverse subspace

and XT = X
1
C = X

2
E for the longitudinal subspace. The transverse and longtiudinal

projections are then

ΠLu =∇[∇2]−1∇ · u = [∇2]−1∇(∇ · u) (B 17)

ΠTu =−∇× ([∇2]−1∇× u) = −[∇2]−1∇× (∇× u). (B 18)

In summary, every vector field on M = T 3 has the unique decomposition u = uT +
uL + uH , where

uT = ΠTu = −∇× ([∇2
EC ]

−1∇× u) (B 19)

and

uL = ΠLu = ∇([∇2
EC ]

−1∇ · u) (B 20)

and

uH = ΠHu =

∫
u d3r/

∫
d3r. (B 21)

Here ∇2
EC is either the vector Laplacian restricted to vectors of the form ∇φ +∇×A

or the scalar Laplacian restricted to scalars of the form ∇ ·A.

Appendix C. All-orders existence of rectifying transformation

This Appendix proves that the rectifying transformation discussed in Section 3.3 exists
to all orders in ǫ = 1/c. In this Appendix only, if ω is a 2-form then ω̂ denotes the bundle

map TM → T ∗M : v 7→ ιvω =: ω̂ v. Similarly, if j is a bivector then ĵ denotes the
bundle map T ∗M → TM : α 7→ ιαj =: ĵ α. Note that if ω is a symplectic form with
corresponding Poisson bivector j then ω̂−1 = −ĵ.

Let ωǫ = ω0 + ǫ ω1 + . . . be a formal power series in ǫ whose coefficients are exact
2-forms ωk = −dθk. Assume there exists a formal power series jǫ = j0 + ǫ j1 + . . . with
bivector coefficients such that −ǫ−1ĵǫ ω̂ǫ = idTM in the sense of formal power series. Here
idTM denotes the identity map TM → TM . We remark that the formal power series 2-
form whose first coefficients are given in Eqs. (3.41)-(3.44) satisfies this assumption. We
leave it as an exercise for the reader to verify this claim. We would like to show that there
exists a sequence of Lie transforms with generating vector fields Gk, k > 1, such that
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. . . exp(−LG2) exp(−LG1)ωǫ = ω0+ ǫ ω1. Such a sequence of Lie transforms comprises an
all-orders rectifying transformation.

As a first step, we will show that there exists a unique formal power series vector field
G1 that solves the equation

ιG1(ω0 + ǫ ω1) = −ǫ2θ2. (C 1)

Let ǫ2δωǫ = ωǫ − (ω0 + ǫ ω1) = ǫ2(ω2 + ǫ ω3 + . . . ). Applying −ǫ−1ĵǫ to the identity

ω̂ǫ = (ω̂0 + ǫ ω̂1) + ǫ2 δω̂ǫ implies idTM = −ǫ−1ĵǫ(ω̂0 + ǫ ω̂1)− ǫ ĵǫδω̂ǫ, which is equivalent
to

idTM = −ǫ−1(idTM + ǫ ĵǫδω̂ǫ)
−1ĵǫ(ω̂0 + ǫ ω̂1), (C 2)

where (idTM + ǫ ĵǫδω̂ǫ)
−1 = idTM − ǫ ĵ0 δω̂0+ . . . . The formula (C 2) says ω̂0+ ǫ ω̂1 has a

formal inverse given by −ǫ−1(idTM + ǫ ĵǫδω̂ǫ)
−1ĵǫ. Applying this formal inverse to both

sides of (C 1) therefore reveals the unique G1 that satisfies (C 1), namely

G1 = ǫ (idTM + ǫ ĵǫδω̂ǫ)
−1ĵǫ θ2. (C 3)

Note that G1 is an O(ǫ) formal power series in ǫ. Also observe that

exp(−LG1)ωǫ = ωǫ − dιG1ωǫ +
1

2
dιG1dιG1ωǫ + d[O(ǫ3)]

= ω0 + ǫ ω1 − ǫ2 dθ2

− dιG1(ω0 + ǫ ω1) +
1

2
dιG1dιG1(ω0 + ǫ ω1) + d[O(ǫ3)]

= ω0 + ǫ ω1 − ǫ2
1

2
dιG1dθ2 + d[O(ǫ3)]

= ω0 + ǫ ω1 + d[O(ǫ3)]. (C 4)

Now we will prove existence of the sequence Gk, k > 1, by induction. Suppose that
there is a sequence of Gk, 1 6 k 6 n such that exp(−LGn

) . . . exp(−LG1)ωǫ = ω0+ ǫ ω1+

ǫ2+n βǫ, where β
(n)
ǫ = β

(n)
0 + ǫ β

(n)
1 + . . . is a formal power series whose coefficients are

exact 2-forms β
(n)
k = −dα

(n)
k . Note that the previous paragraph established existence of

such a sequence with n = 1. We would like to show that there exists a Gn+1 such that

exp(−LGn+1) exp(−LGn
) . . . exp(−LG1)ωǫ = ω0 + ǫ ω1 + ǫ2+(n+1) β

(n+1)
ǫ , where β

(n+1)
ǫ =

β
(n+1)
0 + ǫ β

(n+1)
1 + . . . is a formal power series whose coefficients are exact 2-forms. We

define Gn+1 by requiring that is solves the linear equation

ιGn+1(ω0 + ǫ ω1) = −ǫ2+nα
(n)
0 , (C 5)

whose unique solution is

Gn+1 = ǫn+1(idTM + ǫ ĵǫδω̂ǫ)
−1ĵǫ α

(n)
0 . (C 6)

This Gn+1 has the required properties since

exp(−LGn+1) exp(−LGn
) . . . exp(−LG1)ωǫ

=exp(−LGn+1)

(
ω0 + ǫ ω1 − ǫ2+ndα0

)
+ d[O(ǫ2+(n+1))]

=ω0 + ǫ ω1 − dιGn+1(ω0 + ǫ ω1)− ǫ2+ndα0 + d[O(ǫ2+(n+1))]

=ω0 + ǫ ω1 + ǫ2+ndα
(n)
0 − ǫ2+ndα0 + d[O(ǫ2+(n+1))]

=ω0 + ǫ ω1 + d[O(ǫ2+(n+1))]. (C 7)
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