
ar
X

iv
:1

30
5.

53
31

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
4 

A
ug

 2
01

3
epl draft

Dipolar needles in the microcanonical ensemble: evidence of

spontaneous magnetization and ergodicity breaking

George Miloshevich1,2, Thierry Dauxois3, Ramaz Khomeriki1,4 and Stefano Ruffo3,5

1 Department of Physics, Faculty of Exact and Natural Sciences, Tbilisi State University, 0128 Tbilisi, Georgia
2 Department of Physics, The University of Texas at Austin, Austin TX 78712, USA
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Abstract –We have studied needle shaped three-dimensional classical spin systems with purely
dipolar interactions in the microcanonical ensemble, using both numerical simulations and analyti-
cal approximations. We have observed spontaneous magnetization for different finite cubic lattices.
The transition from the paramagnetic to the ferromagnetic phase is shown to be first-order. For
two lattice types we have observed magnetization flips in the phase transition region. In some
cases, gaps in the accessible values of magnetization appear, a signature of the ergodicity breaking
found for systems with long-range interactions. We analytically explain these effects by performing
a nontrivial mapping of the model Hamiltonian onto a one-dimensional Ising model with compet-
ing antiferromagnetic nearest-neighbor and ferromagnetic mean-field interactions. These results
hint at performing experiments on isolated dipolar needles in order to verify some of the exotic
properties of systems with long-range interactions in the microcanonical ensemble.

Systems with long-range interactions, such as gravita-
tional, Coulomb and magnetic systems, are of fundamen-
tal and practical interest because of their exotic statistical
properties including ensemble inequivalence, negative spe-
cific heat, temperature jumps, ergodicity breaking, etc. [1]
Recently, a number of mean-field type models have been
developed which are very convenient for analytical under-
standing [2,3]. However, up to now, the connection to real
physical systems has not been seriously addressed (see,
however, Refs. [4–6] for some progress in this direction).
It is therefore crucial to propose experimentally testable
effects.

Dipolar force is one of the best candidates for ex-
perimental and theoretical studies of long-range interac-
tions [7]. For instance, experimental studies have been
performed on layered spin structures [8]. For these sys-
tems, intralayer exchange is much larger than the inter-
layer one: hence, every layer can be identified as a single
macroscopic spin. As a consequence, dipolar forces be-

tween layers are dominant and one can describe the system
with an effective long-range one-dimensional model [5].
However, in order to perform a careful study of the sta-
tistical properties of such samples, one should simulate all
the spins in each layer, which is computationally heavy.

Alternatively, one can consider purely dipolar systems
known as dipolar ferromagnets [9, 10], where dipolar ef-
fects prevail over short-range exchange interactions. Long-
range dipolar orientational order is also found theoreti-
cally for dipolar fluids confined in ellipsoidal geometries
[11]. More recently, dipolar ferromagnetism has also been
measured at ambient temperature in assemblies of closely-
spaced cobalt nanoparticles [12].

It has been pointed out long ago [13] that body centered
cubic (bcc) or face centered cubic (fcc) needle like samples
should display spontaneous magnetization, while simple
cubic (sc) lattices can be ordered only antiferromagneti-
cally. On the other hand, it was later argued that dipolar
systems cannot show nonzero magnetization in the ther-
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modynamic limit [14], i.e. as a bulk property. All these
theoretical studies were performed within the canonical
ensemble, but we know that ensemble inequivalence is ex-
pected to be present also for dipolar systems [1]. This
means that the phase diagram of dipolar systems can be
different in the microcanonical ensemble: the location of
phase transition points can vary, temperature jumps may
appear and ergodicity may be broken [3,15,16]. It is there-
fore important to perform a study on samples with needle
shape in the microcanonical ensemble. Experimentally,
microcanonical ensemble measurements imply the realiza-
tion of an isolated sample, or looking at time-scales that
are fast with respect to the energy exchange rate with en-
vironment.
In this Letter, we study the microcanonical dynamics of

dipolar needles via numerical simulations and analytical
approximations. We want to check whether such systems
can display spontaneous magnetization and study the na-
ture of the paramagnetic/ferromagnetic phase transition.
Systems of classical spins with only dipolar interactions

are described by the following Hamiltonian

H =
ε

2

∑

i6=j

a3

r3ij

(

~Si · ~Sj − 3
(~Si · ~rij)(~Sj · ~rij)

r2ij

)

, (1)

where |~Si| = 1 is a unit vector located at the i-th lattice
site, ~rij is the displacement vector between i-th and j-th
site, a stands for the lattice spacing and ε = µ0σ

2/(4πa3)
is an energy scale for dipolar interactions: for instance,
in the case of cobalt nanoparticles with magnetic moment
σ ∼ 2 · 105µB and separation length a ∼ 20nm [12], this
energy could be as large as 2500K (µ0 is vacuum perme-
ability and µB Bohr magneton).

The time evolution of the unit vector ~Si is described by
the torque equation

d~Si

dt
= γ~Si × ~Hi where ~Hi = − 1

σ

∂H
∂~Si

. (2)

Here, ~Hi is the local magnetic field acting on the spin
attached to the i-th lattice site, γ is the particle gyromag-
netic ratio and, in numerical simulations, we measure time
in units of µ/(γε).
In numerical experiments, we solve the torque equation

for spins on sc, bcc and fcc lattices shown in Fig. 1. Ini-
tially, the spins are aligned along the main axis of the
sample, as shown in the figure. In the course of time, we
monitor the three components of the average magnetiza-
tion ~m = (1/N)

∑N

i=1
~Si, where N is the number of spins

over which we perform an average.
While for numerical simulations we directly use Hamil-

tonian (1) with the torque equation, our analytical ap-
proach is based on heuristic approximations by which we
are able to map the main properties of Hamiltonian (1)
onto those of the simple one-dimensional mean-field model
studied in Ref. [3].

x

sc bcc fcc

Fig. 1: Cubic lattices considered in numerical simulations: sim-
ple cubic (sc), body centered (bcc) and face centered (fcc) cu-
bic, respectively. The arrows indicate the initial direction of
the spins while a is the lattice spacing.

We consider samples elongated in the z-direction. This
is the ordering direction of the spin system because the
demagnetizing field is smaller along this axis. We follow
the standard treatment in Refs. [17, 18] by dividing the
sums in Hamiltonian (1) in two parts: The first part is
the sum restricted only to a neighborhood of a site in the
same layer (the reason this is done will be clear below), the
second part is the sum over the remaining portion of the
sample. We treat the latter sum, which takes into account
the long-range character of the dipolar interaction, via a
continuum approximation [18], which gives

Hcont = − εa3

2σ2

∫
[

4π

3

(

~M(~r)
)2

+ ~Hm(~r) ~M(~r)

]

d3r, (3)

where the magnetization density ~M(~r) is obtained by a
local average over a macroscopic number of spins and
~Hm(~r) is the demagnetizing field. In the case of ellip-
soidal samples, there exists a uniform solution with de-
magnetizing field proportional to magnetization density
~Hm = −4πĈ ~M , where

~M =
σ

V

N
∑

i=1

~Si (4)

and Ĉ stands for the demagnetization tensor. For simplic-
ity, we neglect the transversal components of the spin vec-
tors, only the longitudinal components Sz

i are considered.
As a further simplification, we assume that the longitu-
dinal component takes only two values Sz

i = ±1, i.e. we
reduce to Ising spins. After making such a crucial simpli-
fication, only the magnetization density along the z-axis
is nonzero and we can easily perform the integral in for-
mula (3), obtaining

Hcont = − εa3

2Nv0

[

4π

3
− 4πCz

]( N
∑

i=1

Sz
i

)2

, (5)

where we have substituted V = Nv0, v0 being the volume
per spin. It is important to point out that what we mean
by volume is nontrivial in case of finite systems. We define
the volume as the box that encloses the crystal so that the
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size of the box is obtained by matching total energies of
the effective and discrete models. It turns out that in
all lattices considered below this requires the box to be
outstretching by a half a lattice constant from the spins
at the boundary. This also has an effect on the definition
of the aspect ratio.
As far as we consider only the z-components of the spins,

it is easy to see that, for all considered lattices, in each
layer transversal to the z-component of the sample, the
coupling among the spins is antiferromagnetic. On the
contrary, the coupling between neighboring spins in close
transversal layers is ferromagnetic. This latter contribu-
tion is included in the ferromagnetic type coupling (5).
Thus, incorporating nearest neighbor coupling terms and
the terms appearing from the continuum approximation
(5), we can reduce Hamiltonian (1) to the following effec-
tive Hamiltonian

Heff = −K

2

∑

〈i,i′〉

(Sz
i S

z
i′ − 1)− J

2N

( N
∑

i=1

Sz
i

)2

, (6)

where the lattice dependent short-range coupling K is
heuristically estimated below, 〈i, i′〉 means that the sum
is restricted only to nearest-neighbors in the transversal
layers and the ferromagnetic mean-field coupling constant
J is given by the following expression

J =
4πεa3(1− 3Cz)

3v0
, (7)

while the demagnetizing coefficient Cz is given by the fol-
lowing integral [18]

Cz = − 1

4πV

∫

V

d3r

∫

V

d3r1
∂2

∂z2

(

1

|~r − ~r1|

)

. (8)

The demagnetizing coefficient Cz is 1/3 if the sample
length L coincides with the lattice spacing a, while it tends
to zero if the aspect ratio ξ = (L+ a)/(2a) tends to infin-
ity. In Fig. 2a, we plot the dependence of this coefficient
on the aspect ratio, comparing the case of a parallelepiped
with that of an ellipsoid, for which the exact expression is

Cell
z =

1− b2

2b3

(

ln
1 + b

1− b
− 2b

)

, (9)

where b =
√

1− 1/ξ2. In all the estimates below, we use
the demagnetizing coefficients of the parallelepiped, which
gives a better quantitative agreement between analytical
results derived from (6) and numerical simulations per-
formed on (1).
Let us remark that the second term in the effective

Hamiltonian (6) contains the z-component of the aver-

age magnetization mz = (1/N)
∑N

i=1
Sz
i , and its typical

size can be varied by changing the aspect ratio ξ, i.e. the
length L of the sample.
We emphasize that the effective Hamiltonian (6) is the

same as that in formula (1) of Ref. [3]. In the following,
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Fig. 2: a) Demagnetizing coefficient Cz computed numerically
for a parallelepiped using formula (8) (solid line) versus the
aspect ratio of the needle. We also plot the exact curve for an
ellipsoid (dashed line), whose expression is given in formula (9).
b) Final values of the z-component of the magnetization mz

versus the energy per spin (in units of ε), obtained in numerical
simulations of the sc lattice in Fig. 1. In the inset, we plot
entropy versus magnetization of the effective Hamiltonian (6)
at a typical energy in the range of the transition.

we will use results obtained for this Hamiltonian to discuss
the phase diagram of model (1). Our approach consists in
performing an estimate of the values of the couplings K
and J based on features of the finite sample. In Ref. [3], it
is proven that Hamiltonians of type (6) undergo a phase
transition of the ferromagnetic type. This phase transition
is of second order if both couplings K and J are positive.
It becomes first order if the couplingK is sufficiently nega-
tive, which favors locally the antiferromagnetic phase. The
phase transition is present for values above K/J = −0.5,
while for values below the system is always in the para-
magnetic phase. Hence, what determines the presence of
the phase transition in model (1) is the ratio K/J . This
ratio can be estimated using the above expression of J for
particular choices of the lattice (e.g. those of Fig. 1) and
by a rough estimate of the coupling constant K.

For simple cubic lattices (see Fig. 1) which have four
spins in the transversal layer, the coupling constant K =
−2ε. For ξ → ∞, Eq. (8) leads to J = 4πε/3, since
the volume per spin in a sc lattice is v0 = a3. Thus,
K/J = −3/(2π) > −0.5 and, therefore, we can expect the
presence of a ferromagnetic phase.

In order to verify this prediction, we have performed
numerical simulations of model (1), on a 2× 2× 50 sc lat-
tice, starting from a fully magnetized initial state, i.e. all
spins pointing strictly along the z-axis. We then vary the
energy of the initial state by adding random transversal
components to the spins. We let the system relax towards
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a stationary state (this typically happens at times of the
order 104) and monitor the final value of mz for each value
of the energy. We checked that the final state does not
contain domains by looking at the spatial patterns of the
individual spins. Collecting all these final values of the
magnetization, we plot them as a function of energy per
spin in Fig. 2b. We clearly observe a jump in magneti-
zation from a positive value to zero and the presence of
a coexistence region, where both a paramagnetic and a
ferromagnetic phase are present, in full accordance with
the predictions of the effective Hamiltonian (6) that the
phase transition is first-order in the microcanonical en-
semble. For symmetry reasons, we would have observed
also the negative magnetization state if we had prepared
the sample with the spins aligned opposite to the z-axis.
The existence of this symmetry is confirmed by looking at
the entropy of the effective Hamiltonian (6) (see Eq. (3)
in [3]) as a function of mz, shown in the inset of Fig. 2b.
The gaps in the accessible values of magnetization are a
signature of ergodicity breaking [3,15,16] . The first order
phase transition takes place when the maxima of the en-
tropy of the paramagnetic and ferromagnetic states are at
the same height.
As we vary the size and the shape of the sample, the

couplings K and J in Hamiltonian (1) change. We have
then to check whether we are still in a region of param-
eters where the phase transition is present. It happens
that for a sc lattice, an increase of the base size cancels
the phase transition and the system always remains in the
paramagnetic phase. Indeed for a wider base, each spin
has four neighbors and thus the effective antiferromag-
netic coupling constant K = −4ε, while the ferromagnetic
mean-field constant remains J = 4πε/3 even for large as-
pect ratios. Therefore the ratio K/J ≈ −1 does not allow
for magnetized states to exist. This has been verified in
numerical simulations which show that, even in the case
of a 3× 3 base, there is no phase transition.
In order to verify whether other types of lattices can

support phase transitions as suggested in [13], we have
performed simulations for the bcc and fcc lattices shown in
Fig. 1. We have shown that these lattices do have a phase
transition if the aspect ratio is large enough, and therefore
these dipolar samples display spontaneous magnetization.
For body centered cubic lattices, we have four spins in a

layer and one spin in the neighboring layer. In the layer
with four spins, the situation is exactly the same as that
of the sc lattices, while in the layer with one spin there
is no intralayer interaction. Thus, 4/5 of all spins can be
treated as in sc lattices, while one of the five cannot have
an antiferromagnetic coupling. These latter spins form a
vertical chain, and their contribution to the Hamiltonian
is a simple energy shift. Thus, the effective Hamiltonian
for this lattice takes the form

Hbcc
eff =

4

5
Heff +

1

5
NE0. (10)

The antiferromagnetic coupling constant K is unchanged.
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Fig. 3: a) Phase diagram of Hamiltonian (1) for the bcc lattice
in Fig. 1. Circles (blue), diamonds (red) and squares (green)
represent paramagnetic, ferromagnetic and flipping states, re-
spectively. The solid line is the minimal energy computed using
Hamiltonian (10), the dashed one is the phase transition line
and the dash-dotted lines are the bounds of the region with
magnetization flips, again computed with the same effective
Hamiltonian. b) Time evolution of the magnetization in dif-
ferent energy regions as shown by the arrows: L = 20 with an
energy per spin −2.6 (ferromagnetic ), −2.3 (flips) and −2.1
(paramagnetic); in all graphs energy is scaled in units of ε. c)
Entropy per spin for the three phases in panel b).

On the contrary, the mean-field ferromagnetic coupling
constant J changes since the average volume per spin is
now v0 = 4a3/5, which implies that for large aspect ratios
J = 5πε/3. As a consequence, K/J ≈ −0.4 and, from
what we know of Hamiltonian (6), we can therefore expect
many different regimes, contrary to the case of sc lattices,
where the ratio K/J is close to −0.5.

In the following, we will need an estimate of the value
of the energy shift E0. Two ferromagnetic contributions
appear in this quantity: the first one comes from the
sum over all the sample while the second one derives
from the sum over the neighboring spins along the verti-
cal chain. For large aspect ratios, one has approximately
E0 = [−5π/3− 4] ε/2.

We have performed numerical simulations for the bcc
lattice of the full dipolar Hamiltonian (1). We have first
concentrated our attention on detecting the presence of a
phase transition. As control parameters, we use the en-
ergy per spin and the length L of the sample. In Fig. 3a,
we plot with circles the paramagnetic states and with di-
amonds the ferromagnetic ones. The minimal energy for
each sample length is calculable from Hamiltonian (10)
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and is shown by the solid line in Fig. 3a: the agreement
with numerical simulations of Hamiltonian (1) is also very
good.
The effective Hamiltonian (10) predicts the location of

the phase transition energies for each value ofK/J > −0.5
(dashed line in Fig. 3a). The calculation can be per-
formed by looking at entropy versus magnetization: near
the phase transition point this curve is characterized by
three disconnected humps, one at zero magnetization and
two others at negative and positive magnetizations. On
increasing energy from low values, the entropy at nonzero
magnetization increases, while the zero magnetization en-
tropy decreases: they become equal at the phase transition
point. One should emphasize that, both below and above
the phase transition energy, the entropy/magnetization
curve is disconnected, showing ergodicity breaking. Only
after a further increase of energy, the curve becomes con-
nected with still three humps: this energy regime corre-
sponds to the region where magnetization mz flips among
positive, negative and zero values. This region is delimited
by the dash-dotted lines in Fig. 3a.
Numerical simulations confirm the presence of a region

of magnetization flips as shown in Fig. 3b, but not pre-
cisely at the same location in the parameter space that
we predict. In Fig. 3c, we plot for three different energies
the entropy per spin s = (lnP (mz))/N where P (mz) is
obtained from the histogram of the magnetization. The
first energy is in the paramagnetic phase and the entropy
correctly shows a single hump centered around zero mag-
netization. A second energy is in the region of flips and the
entropy shows three peaks, one centered at zero and two
symmetric ones centered at positive and negative values of
the magnetization. Finally, a third energy in the ferromag-
netic phase shows a single peak at a positive value of the
magnetization. It is likely that for this energy value we are
in presence of magnetization gaps, i.e. ergodicity break-
ing, since a symmetric value of magnetization should be
present at this energy, but cannot be reached using micro-
canonical dynamics. Like for sc lattices, we have checked
whether the phase transition persists if one increases the
size of the base of the bcc lattice. With four spins in the
transversal layers, we get K/J = −3/(2π) > −0.5, which
predicts that magnetized states can be realized in the bcc
lattice even for large bases and for large aspect ratios. This
is confirmed in numerical simulations.
Finally, let us switch to face centered cubic lattices. In

the simplest realization of this lattice, there are four and
five spins in subsequent transversal layers (see Fig. 1). Nu-
merical simulations show the same phenomenology as the
one of bcc lattices, for the smaller lengths. However, by
looking at the effective Hamiltonian for this lattice, we can
predict that, like for the sc lattice, magnetization does not
persist for larger bases. Indeed, each spin interacts with
four neighbors inside a transversal layer and, thus, the
antiferromagnetic coupling constant K = −8

√
2ε. The

volume per spin is v0 = a3/4 and therefore J = 16πε/3
for large bases and large aspect ratios. Consequently,

K/J = −3/(
√
2π) < −0.5, which excludes the presence

of spontaneous magnetization.

As the length of the sample increases the system be-
comes more and more one-dimensional. One might there-
fore doubt about the existence of spontaneous magne-
tization for large aspect ratios, because dipolar force is
short-range in one dimension. However, it is well known
that, while one dimensional systems do not spontaneously
magnetize, they nevertheless have a diverging correlation
length at small temperatures T , ℓ = −a/ ln(tanh(g/T )),
where g is the short-range coupling constant. We would
like to give an estimate of this correlation length to com-
pare it with the sample lengths that we use. First of all,
one can get an estimate of the temperature by treating
canonically the single spin in interaction with the ther-
mal bath of all other spins. In the mean-field approxima-
tion [19], mz = tanh [µH/T ] where H = (K + J)mz/µ
is assumed to be constant over the whole lattice. In our
simulations for bcc lattices, the minimal magnetization
for which the ferromagnetic state survives is in the range
mz ≃ 0.65. Using the mean-field formula above, we get
the approximate value of the temperature of the system:
T ≃ 2ε. The corresponding short-range coupling constant
is g = (K + J)/2 ≈ ε, from which we get the value of
the correlation length ℓ ≈ a. This value is much smaller
than the typical length of the sample, and then we can
conclude that the magnetization that we observe is not of
short-range origin.

In conclusion, we have shown clear evidences of the
presence of spontaneous magnetization in finite needle-like
samples, within the microcanonical ensemble. We believe
that the origin of this effect is in the long-range character
of Hamiltonian (1), which we were able to map onto an
effective one-dimensional Ising model with competing an-
tiferromagnetic short-range and ferromagnetic mean-field
couplings. The presence of jumps in magnetization as en-
ergy is varied, the coexistence of paramagnetic and ferro-
magnetic phases in some energy ranges, and the appear-
ance of flips of magnetization are all indications that the
phase transition we observe is of the first-order. We have
simulated three different kinds of cubic lattices and all of
them show spontaneous magnetization in some parameter
ranges. Flips are found only for bcc and fcc lattices.

Magnetization flips which have features of telegraph
noise have been observed experimentally for short-range
ferromagnets [20]. Since rare-earth compounds [9,10] and
cobalt nanoparticle assemblies [12] are dominated by long-
range dipolar interactions, it could be extremely interest-
ing to check experimentally the presence of magnetization
flips in isolated purely dipolar samples.

Our numerical simulations also show that, in the ferro-
magnetic phase, gaps in the accessible values of magneti-
zation appear. This is an indication of ergodicity break-
ing [3,15,16], one of the exotic properties of systems with
long-range interactions [1] that could also be checked in
experiments performed in microcanonical conditions.
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