Imbalanced kinetic Alfvén wave turbulence

George Miloshevich, Thierry Passot, Pierre-Louis Sulem and Dimitri Laveder

Festival de Téorie Aix en Provance, 2019

• Alfvén Waves (AW) play an important role in SW ^[1]

- Reflection leads to backward propagating waves
- SW turbulence results from these interactions
- SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2] is of interest for (PSF
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2] is of interest for (PSF
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative
 Schematics of a forward cascade to small scales
 SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2] is of interest for (PSF
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

<u>∕ ¥ ¥ ¥ ¥ ¥ ¥ ↓</u> Driving Inertial Dissipative Schematics of a forward cascade to small scales SW is collisionless so kinetical treatment is ide

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2] is of interest for (PSF
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Inertial Dissipative
 Schematics of a forward cascade to small scales
 SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
 - Imbalanced turbulence ^[2] is of interest for (PSP)
 - Direct Vlasov-Maxwell simulations are too costly
 - Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2]is of interest for (PSP)
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^{[3}
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2]is of interest for (PSP)
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^{[3}
- Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2]is of interest for (PSP)
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

milosh@utexas.edu

George Miloshevich

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Dissipative Driving Inertial Schematics of a forward cascade to small scales SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2] is of interest for (PSP)
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]

Parker Solar Probe (PSP)

- Alfvén Waves (AW) play an important role in SW ^[1]
 - Reflection leads to backward propagating waves
 - SW turbulence results from these interactions.
 - SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative Schematics of a forward cascade to small scales • SW is collisionless so kinetical treatment is ideal

- Microscale dispersive gyro-scales play a role
- Imbalanced turbulence ^[2]is of interest for (PSP)
- Direct Vlasov-Maxwell simulations are too costly
- Recourse to gyrofluids is more feasible^[3]
- Describe the transition to imbalanced dispersive range

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model

Influence of the dispersive range
Nonlinear diffusion equation
Landau damping
Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

< A

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model

Influence of the dispersive range

- Nonlinear diffusion equation
- Landau damping
- Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model

Influence of the dispersive range

- Nonlinear diffusion equation
- Landau damping
- Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model

Influence of the dispersive range
Nonlinear diffusion equation
Landau damping

Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{\pm} : \nabla \boldsymbol{w}^{-})$ (1)

only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $au_{nl} \gg au_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
 (2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\begin{array}{l} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \boldsymbol{\omega}_{\boldsymbol{p}}^{\pm} + \boldsymbol{\omega}_{\boldsymbol{q}}^{\mp} = \boldsymbol{\omega}_{\boldsymbol{k}}^{\pm} \Rightarrow \boldsymbol{p}_{\parallel} - \boldsymbol{q}_{\parallel} = \boldsymbol{k}_{\parallel} \end{array} \right\} \Rightarrow \boldsymbol{p}_{\parallel} = \boldsymbol{k}_{\parallel}, \quad \boldsymbol{q}_{\parallel} = 0$$

$$(3)$$

- So in MHD it involves scattering of AW off a 2D perturbation ($q_{\parallel}=0$)
- As weak cascade proceeds eventually $\tau_{nl} \sim k_{\perp} w_{k_{\perp}} \sim \tau_A \rightarrow$ and becomes strong
- C. S. Ng and A. Bhattacharjee, PoP **4**, 605–610 (1997) A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted toolPRessorted to **B**

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{\pm} : \nabla \boldsymbol{w}^{-})$ (1)

only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $au_{nl} \gg au_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
 (2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\left. \begin{array}{c} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \omega_{\boldsymbol{p}}^{\pm} + \omega_{\boldsymbol{q}}^{\mp} = \omega_{\boldsymbol{k}}^{\pm} \Rightarrow p_{\parallel} - q_{\parallel} = k_{\parallel} \end{array} \right\} \Rightarrow p_{\parallel} = k_{\parallel}, \quad q_{\parallel} = 0$$

$$(3)$$

• So in MHD it involves scattering of AW off a 2D perturbation ($q_{\parallel}=0$)

- As weak cascade proceeds eventually $\tau_{nl} \sim k_{\perp} w_{k_{\perp}} \sim \tau_A \rightarrow$ and becomes strong
- C. S. Ng and A. Bhattacharjee, PoP **4**, 605–610 (1997) A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to IPR **A A B A**

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{+} : \nabla \boldsymbol{w}^{-}) \quad (1)$ only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $au_{nl} \gg au_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
 (2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\left. \begin{array}{c} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \omega_{\boldsymbol{p}}^{\pm} + \omega_{\boldsymbol{q}}^{\mp} = \omega_{\boldsymbol{k}}^{\pm} \Rightarrow p_{\parallel} - q_{\parallel} = k_{\parallel} \end{array} \right\} \Rightarrow p_{\parallel} = k_{\parallel}, \quad q_{\parallel} = 0$$

$$(3)$$

• So in MHD it involves scattering of AW off a 2D perturbation ($q_{\parallel} = 0$)

- As weak cascade proceeds eventually $au_{nl} \sim k_{\perp} w_{k_{\perp}} \sim au_A \rightarrow$ and becomes strong
- C. S. Ng and A. Bhattacharjee, PoP 4, 605–610 (1997) A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to JPR () ()

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{+} : \nabla \boldsymbol{w}^{-}) \quad (1)$ only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $\tau_{nl} \gg \tau_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
 (2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\begin{array}{l} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \omega_{\boldsymbol{p}}^{\pm} + \omega_{\boldsymbol{q}}^{\mp} = \omega_{\boldsymbol{k}}^{\pm} \Rightarrow p_{\parallel} - q_{\parallel} = k_{\parallel} \end{array} \right\} \Rightarrow p_{\parallel} = k_{\parallel}, \quad q_{\parallel} = 0$$
(3)

- So in MHD it involves scattering of AW off a 2D perturbation ($q_{\parallel} = 0$)
- As weak cascade proceeds eventually $au_{nl} \sim k_{\perp} w_{k_{\perp}} \sim au_A \rightarrow$ and becomes strong
- C. S. Ng and A. Bhattacharjee, PoP **4**, 605–610 (1997)

[4]

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{+} : \nabla \boldsymbol{w}^{-}) \quad (1)$ only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $\tau_{nl} \gg \tau_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
(2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\begin{array}{l} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \boldsymbol{\omega}_{\boldsymbol{p}}^{\pm} + \boldsymbol{\omega}_{\boldsymbol{q}}^{\mp} = \boldsymbol{\omega}_{\boldsymbol{k}}^{\pm} \Rightarrow \boldsymbol{p}_{\parallel} - \boldsymbol{q}_{\parallel} = \boldsymbol{k}_{\parallel} \end{array} \right\} \Rightarrow \boldsymbol{p}_{\parallel} = \boldsymbol{k}_{\parallel}, \quad \boldsymbol{q}_{\parallel} = 0$$
(3)

• So in MHD it involves scattering of AW off a 2D perturbation $(q_{\parallel} = 0)$

• As weak cascade proceeds eventually $au_{nl} \sim k_{\perp} w_{k_{\perp}} \sim au_A \rightarrow$ and becomes strong

- [4] C. S. Ng and A. Bhattacharjee, PoP 4, 605–610 (1997)
 - A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to JPR (E) (E) (E) (C)

George Miloshevich

5

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{+} : \nabla \boldsymbol{w}^{-}) \quad (1)$ only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $\tau_{nl} \gg \tau_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
(2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\begin{array}{l} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \omega_{\boldsymbol{p}}^{\pm} + \omega_{\boldsymbol{q}}^{\mp} = \omega_{\boldsymbol{k}}^{\pm} \Rightarrow p_{\parallel} - q_{\parallel} = k_{\parallel} \end{array} \right\} \Rightarrow p_{\parallel} = k_{\parallel}, \quad q_{\parallel} = 0$$

$$(3)$$

• So in MHD it involves scattering of AW off a 2D perturbation $(q_{\parallel} = 0)$

• As weak cascade proceeds eventually $au_{nl} \sim k_{\perp} w_{k_{\perp}} \sim au_A \rightarrow$ and becomes strong

- [4] C. S. Ng and A. Bhattacharjee, PoP 4, 605–610 (1997)
 - A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to JPR (=) (=) ()

George Miloshevich

5

- Before discussing dispersive effects we review what is known about MHD
- Using Elsässer variables $w^{\pm} := v \pm b$, MHD can be cast:

 $\partial_t \boldsymbol{w}^{\pm} \pm V_A \partial_z \boldsymbol{w}^{\pm} = -\boldsymbol{w}^{\mp} \cdot \nabla \boldsymbol{w}^{\pm} - \nabla P, \quad \nabla \cdot \boldsymbol{w}^{\pm} = 0, \quad P = -\nabla^{-2} (\nabla \boldsymbol{w}^{+} : \nabla \boldsymbol{w}^{-}) \quad (1)$ only counter propagating waves interact

• Assuming weak balanced cascade^[4], many w_{\pm} collisions before cascading $\tau_{nl} \gg \tau_A$

$$w_{k_{\perp}}^{+} = w_{k_{\perp}}^{-}, \qquad w_{k_{\perp}}^{+} w_{k_{\perp}}^{-} \propto k_{\perp}^{-1} \implies w_{k_{\perp}}^{\pm} \propto k_{\perp}^{-1/2}$$
(2)

• Criticism of weak MHD turbulence^[5]: Because AW have $\omega_p^{\pm} = \pm V_A k_{\parallel}$

$$\begin{array}{l} \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{k} \\ \omega_{\boldsymbol{p}}^{\pm} + \omega_{\boldsymbol{q}}^{\mp} = \omega_{\boldsymbol{k}}^{\pm} \Rightarrow p_{\parallel} - q_{\parallel} = k_{\parallel} \end{array} \right\} \Rightarrow p_{\parallel} = k_{\parallel}, \quad q_{\parallel} = 0$$

$$(3)$$

- So in MHD it involves scattering of AW off a 2D perturbation ($q_{\parallel} = 0$)
- As weak cascade proceeds eventually $\tau_{nl} \sim k_{\perp} w_{k_{\perp}} \sim \tau_A \rightarrow$ and becomes strong
- [4] C. S. Ng and A. Bhattacharjee, PoP 4, 605–610 (1997)
 - A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to JPR () ()

George Miloshevich

5

- Imbalanced cascades are much more common
- When $w_{k_1}^+ \neq w_{k_1}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8] introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^2/k_{\perp}$

$$k_{\parallel}V_{A} \sim k_{\perp}v_{\perp} \qquad \epsilon \sim \frac{V_{A}^{3}}{L}, \quad \epsilon \sim \frac{v_{\perp}^{2}}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_{A}} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3}$$
(4)

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
- Y. Lithwick et al., ApJ **582**, 1220–1240 (2003)
- P. Goldreich and S. Sridhar, ApJ **438**, 763–775 (1995)
- S. Boldyrev et al., ApJ **699**, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^2/k_{\perp}$

$$k_{\parallel}V_{A} \sim k_{\perp}v_{\perp} \qquad \epsilon \sim \frac{V_{A}^{3}}{L}, \quad \epsilon \sim \frac{v_{\perp}^{2}}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_{A}} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3}$$
(4)

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
- Y. Lithwick et al., ApJ **582**, 1220–1240 (2003)
- P. Goldreich and S. Sridhar, ApJ **438**, 763–775 (1995)
- S. Boldyrev et al., ApJ **699**, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^{+} \neq w_{k_{\perp}}^{-}$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8] introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^2/k_{\perp}$

$$k_{\parallel}V_A \sim k_{\perp}v_{\perp} \qquad \epsilon \sim \frac{V_A^3}{L}, \quad \epsilon \sim \frac{v_{\perp}^2}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_A} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3}$$
(4)

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
 - Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
 - P. Goldreich and S. Sridhar, ApJ **438**, 763–775 (1995)
 - S. Boldyrev et al., ApJ **699**, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

[6]

[7]

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^{2}/k_{\perp}$

$$k_{\parallel}V_{A} \sim k_{\perp}v_{\perp} \qquad \epsilon \sim \frac{V_{A}^{3}}{L}, \quad \epsilon \sim \frac{v_{\perp}^{2}}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_{A}} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3}$$
(4)

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
 - Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
 - P. Goldreich and S. Sridhar, ApJ **438**, 763–775 (1995)
 - S. Boldyrev et al., ApJ **699**, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

[6]

[7]

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^2/k_{\perp}$

$$k_{\parallel}V_A \sim k_{\perp}v_{\perp} \quad \epsilon \sim \frac{V_A^3}{L}, \quad \epsilon \sim \frac{v_{\perp}^2}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_A} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3} \tag{4}$$

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51-58 (1983)
- Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
- P. Goldreich and S. Sridhar, ApJ 438, 763–775 (1995)
- S. Boldyrev et al., ApJ 699, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

[6]

[7]

[8]

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^2/k_{\perp}$

$$k_{\parallel}V_{A} \sim k_{\perp}v_{\perp} \quad \epsilon \sim \frac{V_{A}^{3}}{L}, \quad \epsilon \sim \frac{v_{\perp}^{2}}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_{A}} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3} \tag{4}$$

• Role of dynamical alignment leading to -3/2 energy spectrum^[9]

- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
 - Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
- P. Goldreich and S. Sridhar, ApJ 438, 763–775 (1995)
- S. Boldyrev et al., ApJ 699, L39–L42 (2009)
 - A. Beresnyak, ApJ 784, L20 (2014)

[6]

[7]

[8]

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating *critical balance*

Weak $E_{\pm}(k_{\perp}) := w_{k_{\perp}}^{2}/k_{\perp}$

$$k_{\parallel}V_A \sim k_{\perp}v_{\perp} \quad \epsilon \sim \frac{V_A^3}{L}, \quad \epsilon \sim \frac{v_{\perp}^2}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_A} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3}$$
(4)

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- [6] R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
 - Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
 - P. Goldreich and S. Sridhar, ApJ 438, 763-775 (1995)
 - S. Boldyrev et al., ApJ 699, L39–L42 (2009)
 - A. Beresnyak, ApJ **784**, L20 (2014

[8]

[9]

- Imbalanced cascades are much more common
- When $w_{k_{\perp}}^+ \neq w_{k_{\perp}}^-$ additional criterion is required
- This is provided by the phenomenon of pinning ^{[6][7]}
- Weak turbulence proceeds to become strong
- Goldreich and Sridhar^[8]introduced anisotropic theory postulating critical balance

Weak $E_{\pm}(k_{\pm}) := w_{k_{\pm}}^2/k_{\pm}$

$$k_{\parallel}V_A \sim k_{\perp}v_{\perp} \quad \epsilon \sim \frac{V_A^3}{L}, \quad \epsilon \sim \frac{v_{\perp}^2}{t_{cas}}, \quad t_{cas} \sim \frac{1}{k_{\parallel}V_A} \Rightarrow \qquad k_{\parallel} \sim k_{\perp}^{2/3}L^{-1/3} \tag{4}$$

- Role of dynamical alignment leading to -3/2 energy spectrum^[9]
- High resolution MHD simulations suggest -5/3 energy spectrum^[10]
- [6] R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
 - Y. Lithwick et al., ApJ 582, 1220-1240 (2003)
- P. Goldreich and S. Sridhar, ApJ 438, 763-775 (1995) [8]
- [9] S. Boldyrev et al., ApJ 699, L39–L42 (2009) [10]
 - A. Beresnyak, ApJ 784, L20 (2014)

[7]

Addressing the dispersive range in Solar wind

- We leave the controversy of MHD and instead address dispersive scales
- Our description must involve small β_e relevant for the solar wind near the sun
- kinetic scales of interest are: Ion ho_i and sonic ho_s Larmor radii

Relative kinetic plasma modes^[11]

Electron beta

V. Roytershteyn et al., ApJ **870**, 103 (2019)

Addressing the dispersive range in Solar wind

- We leave the controversy of MHD and instead address dispersive scales
- Our description must involve small β_e relevant for the solar wind near the sun
- kinetic scales of interest are: Ion ho_i and sonic ho_s Larmor radii

Addressing the dispersive range in Solar wind

- We leave the controversy of MHD and instead address dispersive scales
- Our description must involve small β_e relevant for the solar wind near the sun
- kinetic scales of interest are: Ion ho_i and sonic ho_s Larmor radii

Hamiltonian reduced gyrofluid model (GYRO)

[12]

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed

- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

Hamiltonian reduced gyrofluid model (GYRO)

[12

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

Hamiltonian reduced gyrofluid model (GYRO)

[12

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

- In order to understand gyroscale physics gyrokinetics $^{[12]}(5D)$ is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

- In order to understand gyroscale physics gyrokinetics $^{[12]}(5D)$ is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

[12]

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

[12]

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

[12]

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

[12]

- In order to understand gyroscale physics gyrokinetics ^[12](5D) is often employed
- Numerical solutions of developed spectra are too costly even for this model
- Therefore, it is desirable to find some closure for a 3D gyrofluid model
- A Hamiltonian closure of this kind has been found recently ^[13].
- Omitting effects of *electron inertia* $m_e/m_i = 0$ the simplified equations read:

- In nondimensional form the length is normalized to sonic Larmor radius ρ_s . $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau}\rho_s, \quad \tau = T_{0i}/T_{0e}$
- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow \boldsymbol{w}^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW): $\omega \to \alpha(\beta_e, \tau) k_{\parallel} k_{\perp}$ as $k \to \infty$
- Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_\parallel|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \qquad (11)$$

$$\mathcal{E}_C = -\int N_e A_{\parallel} d^3 x \longrightarrow \begin{cases} -\int \omega_{iz} A_{\parallel} d^3 x, & \text{In MHD} \\ \left(\frac{2}{\beta_e + \beta_i} + 1\right) \int B_z A_{\parallel} d^3 x, & \text{sub-ion} \end{cases}$$

We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3x$

(10)

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s . $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau}\rho_s, \quad \tau = T_{0i}/T_{0e}$

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}} / m_i, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i} / T_{0e}$ (10) • Introducing $\mu^{\pm} := \hat{\Lambda} \phi \pm V_A A_{\parallel}$ - Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda} (\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$

- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW): $\omega \to \alpha(\beta_e, \tau) k_{\parallel} k_{\perp}$ as $k \to \infty$
- Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_\parallel|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \tag{11}$$

$$\mathcal{E}_C = -\int N_e A_{\parallel} d^3 x \longrightarrow \begin{cases} -\int \omega_{iz} A_{\parallel} d^3 x, & \text{In MHD} \\ \left(\frac{2}{\beta_e + \beta_i} + 1\right) \int B_z A_{\parallel} d^3 x, & \text{sub-ion} \end{cases}$$
(10)

We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3 x$

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s .

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i}/T_{0e}$ (10)

- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW):
- Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_\parallel|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \tag{11}$$

$$\mathcal{E}_C = -\int N_e A_{\parallel} d^3 x \longrightarrow \begin{cases} -\int \omega_{iz} A_{\parallel} d^3 x, & \text{In MHD} \\ \left(\frac{2}{\beta_e + \beta_i} + 1\right) \int B_z A_{\parallel} d^3 x, & \text{sub-ion} \end{cases}$$

We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3 x$

KAW have V_{ph}

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s .

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i}/T_{0e}$ (10)

ω

- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW):

$$ightarrow lpha(eta_e, au) \, k_\parallel k_\perp$$
 as $k
ightarrow \infty$

• Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_\parallel|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \quad (11)$$

$$\mathcal{E}_C = -\int N_e A_\parallel d^3 x \to \begin{cases} -\int \omega_{iz} A_\parallel d^3 x, & \ln \text{ MHD} \\ \left(\frac{2}{B_c + B_i} + 1\right) \int B_z A_\parallel d^3 x, & \text{sub-ion} \end{cases}$$

We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3x$

KAW have V_{ph}

10

100

0.10

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s .

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i}/T_{0e}$ (10)

- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW): ω

$$ightarrow lpha(eta_e, au)\,k_\parallel k_\perp$$
 as $k
ightarrow\infty$

• Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_\parallel|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \qquad (11)$$

Vph

 $\mathcal{E}_C = -\int N_e A_{\parallel} d^3 x \to \begin{cases} -\int \omega_{iz} A_{\parallel} d^3 x, & \text{In MHD} \\ \left(\frac{2}{\beta_e + \beta_i} + 1\right) \int B_z A_{\parallel} d^3 x, & \text{sub-ion} \end{cases}$ (12)

We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3 x$

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s .

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i}/T_{0e}$ (10)

- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW): ω

$$\phi \to lpha(eta_e, au) \, k_\parallel k_\perp$$
 as $k \to \infty$

• Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_{\parallel}|^2 - N_e (\varphi - N_e - B_z) \right) d^3 x, \qquad (11)$$

V_{ph} 1000 r

> $\mathcal{E}_{C} = -\int N_{e}A_{\parallel} d^{3}x \rightarrow \begin{cases} -\int \omega_{iz}A_{\parallel} d^{3}x, & \text{In MHD} \\ \left(\frac{2}{\beta_{e}+\beta_{i}}+1\right) \int B_{z}A_{\parallel} d^{3}x, & \text{sub-ion} \end{cases}$ (12) We can also introduce energies associated with "backward" and

"forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu^{\pm})^2 d^3 x$

• In nondimensional form the length is normalized to sonic Larmor radius ρ_s .

 $\rho_s = c_s / \Omega_i, \quad c_s := \sqrt{T_{oe}/m_i}, \quad \rho_i = \sqrt{2\tau} \rho_s, \quad \tau = T_{0i}/T_{0e}$ (10)

- Introducing $\mu^{\pm} := \hat{\Lambda}\phi \pm V_A A_{\parallel}$ Elsässer potentials, where $\hat{\Lambda} := \hat{\Lambda}(\Delta_{\perp}, \hat{M}_1, \hat{M}_2)$
- In MHD $\tau \ll 1, \Delta_{\perp} \ll 1 \Rightarrow \hat{\Lambda} \to 1 \Rightarrow w^{\pm} \to \nabla \mu^{\pm} \times \hat{z}$ are like MHD Elsässer fields
- Model describes Kinetic Alfvén Waves (KAW): ω

$$\phi \to lpha(eta_e, au) \, k_\parallel k_\perp$$
 as $k \to \infty$

• Energy and generalized cross-helicity conserved:

$$\mathcal{E} = \frac{1}{2} \int \left(V_A^2 |\nabla_\perp A_{\parallel}|^2 - N_e(\varphi - N_e - B_z) \right) d^3 x, \qquad (11)$$

V_{ph} 1000 r

> $\mathcal{E}_{C} = -\int N_{e}A_{\parallel} d^{3}x \rightarrow \begin{cases} -\int \omega_{iz}A_{\parallel} d^{3}x, & \text{In MHD} \\ \left(\frac{2}{\beta_{e}+\beta_{i}}+1\right) \int B_{z}A_{\parallel} d^{3}x, & \text{sub-ion} \end{cases}$ (12) We can also introduce energies associated with "backward" and "forward" propagating waves: $\mathcal{E}_{\pm} := \frac{1}{2} \int (\mu_{\pm}^{\pm})^{2} d^{3}x$

George Miloshevich

Outline

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model

2 Influence of the dispersive range

- Nonlinear diffusion equation
- Landau damping
- Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

Steps to derive wave kinetic equation: Ask me later?

• Using Fourier decomposition,
$$a_{k}^{\sigma_{k}} := e^{i\omega_{k}^{\sigma_{k}}t}k\mu_{k}^{\sigma_{k}}, \tau_{NL} \gg \omega^{-1}, \sigma = \pm$$
 and
 $\Omega_{k;pq}^{\sigma_{k}\sigma_{p}\sigma_{q}} = \omega_{k}^{\sigma_{k}} - \omega_{p}^{\sigma_{p}} - \omega_{q}^{\sigma_{q}} = \sigma_{k}v_{ph}(k_{\perp})k_{\parallel} - \sigma_{p}v_{ph}(p_{\perp})p_{\parallel} - \sigma_{q}v_{ph}(q_{\perp})q_{\parallel}.$ (13)

resonance condition one obtains wave kinetic equation:

$$\partial_{t}Q_{k}^{\sigma} = 4\pi \int \sum_{\sigma_{p},\sigma_{q}} \delta(k+p+q) \delta(\Omega_{kpq}^{\sigma\sigma_{p}\sigma_{q}})$$

$$V_{kpq}^{\sigma\sigma_{p}\sigma_{q}} \left\{ \left(V_{pqk}^{\sigma_{p}\sigma_{q}\sigma} Q_{q}^{\sigma_{q}} + V_{qpk}^{\sigma_{q}\sigma_{p}\sigma} Q_{p}^{\sigma_{p}} \right) Q_{k}^{\sigma} + V_{kpq}^{\sigma\sigma_{p}\sigma_{q}} Q_{p}^{\sigma_{p}} Q_{q}^{\sigma_{q}} \right\} dpdq., \quad (14)$$

where

$$\langle a_{\boldsymbol{k}}^{\sigma_{\boldsymbol{k}}} a_{\boldsymbol{k}'}^{\sigma_{\boldsymbol{k}'}} \rangle =: Q_{\boldsymbol{k}}^{\sigma_{\boldsymbol{k}}\sigma_{\boldsymbol{k}'}} \delta(\boldsymbol{k} + \boldsymbol{k}') \rightleftharpoons Q_{\boldsymbol{k}}^{\sigma} = \frac{1}{\pi k_{\perp}} \left(E(k_{\perp}, k_{\parallel}) + \sigma v_{ph}(k_{\perp}) E_{C}(k_{\perp}, k_{\parallel}) \right).$$
(15)

and introducing notation $\xi := V_A/V_{ph}$, the vertex is defined as

$$V_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}}^{\sigma_{k}\sigma_{p}\sigma_{q}} := \frac{\widehat{\boldsymbol{z}}\cdot(\boldsymbol{p}\times\boldsymbol{q})}{8\,\xi(k_{\perp})} \left(\frac{\sigma_{p}}{\xi(p_{\perp})} - \frac{\sigma_{q}}{\xi(q_{\perp})}\right) \frac{\sigma_{p}\sigma_{q}}{k_{\perp}p_{\perp}q_{\perp}} \left(\sigma_{k}k_{\perp}^{2}\xi(k_{\perp}) + \overset{\circlearrowright}{p.q.k}\right)$$
(16)

Nonlinear diffusion equations (NDE) for weak turbulence

• Assuming isotropy in the transverse plane we can collapse $\int d\boldsymbol{p} d\boldsymbol{q} \delta(\boldsymbol{k} + \boldsymbol{p} + \boldsymbol{q}) \rightarrow 2\pi \int dp_{\parallel} dq_{\parallel} \delta(k_{\parallel} + p_{\parallel} + q_{\parallel}) \int_{\Delta_{k_{\perp}}} (1/\sin\alpha) dp_{\perp} dq_{\perp} \qquad (17)$

• In addition, assuming local interactions $k_\perp \approx p_\perp \approx q_\perp$ and $k_\parallel \approx p_\parallel \approx q_\parallel$

- $E^{\pm} = (E \pm V_{ph} E_C)/2$
 - Under these assumptions nonlinear diffusion equation for energy and cross-helicity has been derived^[14]

$$\frac{\partial}{\partial t}\frac{E}{2} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^{6} V_{ph} \sum_{r=\pm 1} E^{(-r)} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}} \right) \right\}$$

$$\frac{\partial}{\partial t} \frac{E_C}{2} = \frac{\partial}{\partial k_\perp} \left\{ k_\perp^6 \sum_{r=\pm 1} (-1)^r E^{(-r)} \frac{\partial}{\partial k_\perp} \left(\frac{E^{(r)}}{k_\perp} \right) \right\}$$

(19)

T. Passot and P. L. Sulem, JPP 85, 905850301 (2019

Nonlinear diffusion equations (NDE) for weak turbulence

• Assuming isotropy in the transverse plane we can collapse $\int d\mathbf{p} d\mathbf{q} \delta(\mathbf{k} + \mathbf{p} + \mathbf{q}) \rightarrow 2\pi \int dp_{\parallel} dq_{\parallel} \delta(k_{\parallel} + p_{\parallel} + q_{\parallel}) \int_{\Delta_{k_{\perp}}} (1/\sin\alpha) dp_{\perp} dq_{\perp} \qquad (17)$

• In addition, assuming local interactions $k_\perp pprox p_\perp pprox q_\perp$ and $k_\parallel pprox p_\parallel pprox q_\parallel$

 Under these assumptions nonlinear diffusion equation for energy and cross-helicity has been derived^[14]

$$\frac{\partial}{\partial t}\frac{E}{2} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^{6} V_{ph} \sum_{r=\pm 1} E^{(-r)} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}} \right) \right\}$$

$$\frac{\partial}{\partial t} \frac{E_C}{2} = \frac{\partial}{\partial k_\perp} \left\{ k_\perp^6 \sum_{r=\pm 1} (-1)^r E^{(-r)} \frac{\partial}{\partial k_\perp} \left(\frac{E^{(r)}}{k_\perp} \right) \right\}$$

(19)

T. Passot and P. L. Sulem, JPP **85**, 905850301 (20

Nonlinear diffusion equations (NDE) for weak turbulence

• Assuming isotropy in the transverse plane we can collapse $\int d\mathbf{p} d\mathbf{q} \delta(\mathbf{k} + \mathbf{p} + \mathbf{q}) \rightarrow 2\pi \int dp_{\parallel} dq_{\parallel} \delta(k_{\parallel} + p_{\parallel} + q_{\parallel}) \int_{\Delta_{k_{\perp}}} (1/\sin\alpha) dp_{\perp} dq_{\perp} \qquad (17)$

• In addition, assuming local interactions $k_\perp\approx p_\perp\approx q_\perp$ and $k_\parallel\approx p_\parallel\approx q_\parallel$

- $E^{\pm} = (E \pm V_{ph} E_C)/2$
 - Under these assumptions nonlinear diffusion equation for energy and cross-helicity has been derived^[14]

$$\frac{\partial}{\partial t}\frac{E}{2} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^{6} V_{ph} \sum_{r=\pm 1} E^{(-r)} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}} \right) \right\}$$

$$\frac{\partial}{\partial t}\frac{E_C}{2} = \frac{\partial}{\partial k_\perp} \left\{ k_\perp^6 \sum_{r=\pm 1} (-1)^r E^{(-r)} \frac{\partial}{\partial k_\perp} \left(\frac{E^{(r)}}{k_\perp} \right) \right\}$$
(19)

(18)

T. Passot and P. L. Sulem, JPP **85**, 905850301 (2019)

[14]

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $k_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^3 V_{ph} E^{\mp})^{-1}, \quad \omega_L := V_{ph} k_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance*

$$\tau_{tr,w}^{\pm} = (\tau_{NL}^{\pm})^2 \omega_L \Longrightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \tilde{k}_{\parallel})^{-1}$$
(2)

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{+}}\right)^{(1-r) \times \ell^{4}}, \quad r = \pm 1$$
(21)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations ^[16]are consistent with $\chi \sim 1/4$

The effect of χ in MHD

B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)
 A. Beresnyak and A. Lazarian, ApJ 682, 1070–1075 (2008)

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^3 V_{ph} E^{\mp})^{-1}, \quad \omega_L := V_{ph} \widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance*

$${}^{\pm}_{tr,w} = (\tau_{NL}^{\pm})^2 \omega_L \Longrightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \widetilde{k}_{\parallel})^{-1}$$

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{+}}\right)^{(1-r)_{\perp}/4}, \quad r = \pm 1$$
(21)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations ^[16]are consistent with $\chi \sim 1/4$

The effect of χ in MHD

B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)
A. Beresnyak and A. Lazarian, ApJ 682, 1070–1075 (2008)

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3} V_{ph} E^{\mp})^{-1}, \quad \omega_{L} := V_{ph} \widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance* $\tau_{tr.w}^{\pm} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \tilde{k}_{\parallel})^{-1}$ (20)

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{-}}{r}\right)^{(1-r)/4}, \quad r = \pm 1$$
(21)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations ^[16]are consistent with $\chi \sim 1/4$

The effect of χ in MHD

B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)
A. Beresnyak and A. Lazarian, ApJ 682, 1070–1075 (2008)

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3}V_{ph}E^{\mp})^{-1}, \quad \omega_{L} := V_{ph}\widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance*

$$\tau_{tr,w}^{\pm} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \widetilde{k}_{\parallel})^{-1}$$
 (20)

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{-}}{E^{-}}\right)^{(1-r)} , \quad r = \pm 1$$
(21)

• When $\chi = 0$ both E_+ and E_- cascades are strong.

• It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations ^[16]are consistent with $\chi \sim 1/4$

The effect of χ in MHD

15] B. D. G. Chandran, The Astrophysical Journal **685**, 646–658 (2008)

George Miloshevich

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3}V_{ph}E^{\mp})^{-1}, \quad \omega_{L} := V_{ph}\widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance*

$$\tau_{tr,w}^{\pm} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \tilde{k}_{\parallel})^{-1}$$
(20)

• The + wave affects the correlation length of – so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{-}}\right)^{(1-r)\chi/4}, \quad r = \pm 1$$
(22)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations ^[16]are consistent with $\chi \sim 1/4$

The effect of χ in MHD

15] B. D. G. Chandran, The Astrophysical Journal **685**, 646–658 (2008)

George Miloshevich

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3}V_{ph}E^{\mp})^{-1}, \quad \omega_{L} := V_{ph}\widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with *critical balance*

$$t_{tr,w}^{\pm} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \tilde{k}_{\parallel})^{-1}$$
(20)

• The + wave affects the correlation length of – so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{-}}\right)^{(1-r)\chi/4}, \quad r = \pm 1$$
(21)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

• DNS MHD simulations $^{[16]} {\rm are}$ consistent with $\chi \sim 1/4$

The effect of χ in MHD

15] B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)

George Miloshevich

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3}V_{ph}E^{\mp})^{-1}, \quad \omega_{L} := V_{ph}\widetilde{k}_{\parallel}$
- In strong turbulence transfer time is modified consistently with critical balance

$${}^{\pm}_{rw} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \widetilde{k}_{\parallel})^{-1}$$
(20)

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{-}}\right)^{(1-r)\chi/4}, \quad r = \pm 1$$
(21)

• When $\chi = 0$ both E_+ and E_- cascades are strong.

• It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$

The effect of χ in MHD

• DNS MHD simulations $^{[16]}{} {\rm are}$ consistent with $\chi \sim 1/4$

- As turbulence proceeds to small scales it ceases to be weak: $\tau_{NL} \sim \tau_L$
- In strong turbulence parallel transfer is non-negligible $\tilde{k}_{\parallel} \neq \text{const}$
- In weak turbulence the transfer time is: $\tau_{tr,w}^{\pm} = (k_{\perp}^{3}V_{ph}E^{\mp})^{-1}, \quad \omega_{L} := V_{ph}k_{\parallel}$
- In strong turbulence transfer time is modified consistently with critical balance

$${}^{\pm}_{rw} = (\tau_{NL}^{\pm})^2 \omega_L \Rightarrow \tau_{NL}^{\pm} \sim (k_{\perp}^3 V_{ph}^2 E^{\mp})^{-1/2} \sim \tau_L = (V_{ph} \widetilde{k}_{\parallel})^{-1}$$
(20)

The effect of χ in MHD

• The + wave affects the correlation length of - so

$$\widetilde{k}_{\parallel}^{(r)} = (k_{\perp}^{3} E^{(r)})^{1/2} \left(\frac{E^{+}}{E^{-}}\right)^{(1-r)\chi/4}, \quad r = \pm 1$$
(21)

- When $\chi = 0$ both E_+ and E_- cascades are strong.
- It is reasonable to treat E_+ weakly ^[15], where $\chi = 1$
- DNS MHD simulations $^{[16]}{} {\rm are}$ consistent with $\chi \sim 1/4$

[15] B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)

A. Beresnyak and A. Lazarian, ApJ 682, 1070–1075 (2008)

George Miloshevich

16

Numerical scheme for NDE - Ask me later?

$$\frac{1}{2}\frac{\partial}{\partial t} \begin{pmatrix} E \\ E_C \end{pmatrix} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^6 \begin{pmatrix} V_{ph} \\ 1 \end{pmatrix} \sum_{r=\pm 1} \begin{pmatrix} 1 \\ (-1)^r \end{pmatrix} \frac{E^{(-r)}}{\widetilde{k}_{\parallel}^{\pm}} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}} \right) \right\} =: \frac{\partial}{\partial k_{\perp}} \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix}$$

• We are modeling coupled nonlinear diffusion equations of Leith type.

• Code for Gravitational wave turbulence ^[17]was used with modified the scheme Fields are evaluated on the expanding grid. E_{i-2} E_{i-1} E_i E_{i+1} E_{i+2} new

$$k_i = k_0 \cdot \lambda^i \tag{23}$$

Changes that were made:

- Modification of the finite differencing
- ② The addition for dispersive effects
- Support for strong turbulence
- Implementation of Landau damping

5. Galtier et al., Phys. D: Nonl. Phen. **390**, 84–88 (201)

$$E_{i-2} = E_{i-1} = E_i = E_{i+1} = E_{i+2}$$

$$\xrightarrow{\varepsilon_{i-\frac{3}{2}}} \varepsilon_{i-\frac{1}{2}} \xrightarrow{\varepsilon_{i+\frac{1}{2}}} \varepsilon_{i+\frac{3}{2}} \xrightarrow{\varepsilon_{i+\frac{3}{2}}} \text{ old } k$$

Coupling the grid using interpolated values

Numerical scheme for NDE - Ask me later?

$$\frac{1}{2}\frac{\partial}{\partial t} \begin{pmatrix} E\\ E_C \end{pmatrix} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^6 \begin{pmatrix} V_{ph}\\ 1 \end{pmatrix} \sum_{r=\pm 1} \begin{pmatrix} 1\\ (-1)^r \end{pmatrix} \frac{E^{(-r)}}{\widetilde{k}_{\parallel}^{\pm}} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}}\right) \right\} =: \frac{\partial}{\partial k_{\perp}} \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix}$$

• We are modeling coupled nonlinear diffusion equations of Leith type.

• Code for Gravitational wave turbulence $\begin{bmatrix} 17 \end{bmatrix}$ was used with modified the scheme Fields are evaluated on the expanding grid. E_{i-2} E_{i-1} E_i E_{i+1} E_{i+2}

$$k_i = k_0 \cdot \lambda^i \tag{23}$$

Changes that were made:

- Modification of the finite differencing
- The addition for dispersive effects
- Support for strong turbulence
- Implementation of Landau damping

S. Galtier et al., Phys. D: Nonl. Phen. 390, 84 -88 (2019)

Coupling the grid using interpolated values

George Miloshevich

[17]

milosh@utexas.edu

Université Côte d'Azur 12 / 18

Numerical scheme for NDE - Ask me later?

$$\frac{1}{2}\frac{\partial}{\partial t} \begin{pmatrix} E\\ E_C \end{pmatrix} = \frac{\partial}{\partial k_{\perp}} \left\{ k_{\perp}^6 \begin{pmatrix} V_{ph}\\ 1 \end{pmatrix} \sum_{r=\pm 1} \begin{pmatrix} 1\\ (-1)^r \end{pmatrix} \frac{E^{(-r)}}{\widetilde{k}_{\parallel}^{\pm}} \frac{\partial}{\partial k_{\perp}} \left(\frac{E^{(r)}}{k_{\perp}} \right) \right\} =: \frac{\partial}{\partial k_{\perp}} \begin{pmatrix} \varepsilon\\ \eta \end{pmatrix}$$

(22)

- We are modeling coupled nonlinear diffusion equations of Leith type.
- Code for Gravitational wave turbulence [17] was used with modified the scheme Fields are evaluated on the expanding grid. E_{i-2} E_{i-1} E_i E_{i+1} E_{i+2}

$$k_i = k_0 \cdot \lambda^i \tag{23}$$

Changes that were made:

- Modification of the finite differencing
- The addition for dispersive effects
- Support for strong turbulence
- Implementation of Landau damping
 - S. Galtier et al., Phys. D: Nonl. Phen. 390, 84 -88 (2019)

Coupling the grid using interpolated values

[17]

We can rewrite the stationary weak diffusive equations using

$$E^{\pm}(k_{\perp}) =: \frac{1}{2} k_{\perp} \rho(k_{\perp}) e^{\pm \phi(k_{\perp})}.$$
 (24)

so that $|E_C(k_{\perp})| \leq E(k_{\perp})/v_{ph}(k_{\perp})$. NDE rewrites

Weak turbulence analytics

Strong turbulence simulation

$$\frac{\partial}{\partial k_{\perp}} \rho^{2}(k_{\perp}) = -\frac{2\varepsilon}{Ck_{\perp}^{7}v_{ph}(k_{\perp})}$$
(25)
$$\rho^{2}(k_{\perp})\frac{\partial}{\partial k_{\perp}}\phi(k_{\perp}) = -\frac{\eta}{Ck_{\perp}^{7}}.$$
(26)

• $v_{ph}(k_{\perp}) \rightarrow k_{\perp} \Rightarrow \rho^2(k_{\perp}) \sim \varepsilon k_{\perp}^{-7} \Rightarrow \phi(k_{\perp}) \sim a + bk_{\perp}$ where $0 > b \propto \eta/\varepsilon \Rightarrow E^{\pm}(k_{\perp}) \sim k_{\perp}^{-5/2} e^{\pm bk_{\perp}}$

• So one solutions exponentially diverge, unless we make modifications (confirmed in strong NDE simulation)

• When we choose $\chi = 1$ this problem is cured.

George Miloshevich

We can rewrite the stationary weak diffusive equations using

$$E^{\pm}(k_{\perp}) =: \frac{1}{2} k_{\perp} \rho(k_{\perp}) e^{\pm \phi(k_{\perp})}.$$
 (24)

so that $|E_C(k_{\perp})| \leq E(k_{\perp})/v_{ph}(k_{\perp})$. NDE rewrites

Weak turbulence analytics

Strong turbulence simulation

$$\frac{\partial}{\partial k_{\perp}} \rho^{2}(k_{\perp}) = -\frac{2\varepsilon}{Ck_{\perp}^{7}v_{ph}(k_{\perp})}$$
(25)
$$\rho^{2}(k_{\perp})\frac{\partial}{\partial k_{\perp}}\phi(k_{\perp}) = -\frac{\eta}{Ck_{\perp}^{7}}.$$
(26)

• $v_{ph}(k_{\perp}) \rightarrow k_{\perp} \Rightarrow \rho^2(k_{\perp}) \sim \varepsilon k_{\perp}^{-7} \Rightarrow \phi(k_{\perp}) \sim a + bk_{\perp}$ where $0 > b \propto \eta/\varepsilon \Rightarrow E^{\pm}(k_{\perp}) \sim k_{\perp}^{-5/2} e^{\pm bk_{\perp}}$

• So one solutions exponentially diverge, unless we make modifications (confirmed in strong NDE simulation)

• When we choose $\chi = 1$ this problem is cured.

George Miloshevich

We can rewrite the stationary weak diffusive equations using

$$E^{\pm}(k_{\perp}) =: \frac{1}{2} k_{\perp} \rho(k_{\perp}) e^{\pm \phi(k_{\perp})}.$$
 (24)

so that $|E_C(k_{\perp})| \leq E(k_{\perp})/v_{ph}(k_{\perp})$. NDE rewrites

Weak turbulence analytics

Strong turbulence simulation

$$\frac{\partial}{\partial k_{\perp}} \rho^{2}(k_{\perp}) = -\frac{2\varepsilon}{Ck_{\perp}^{7}v_{ph}(k_{\perp})}$$
(25)
$$\rho^{2}(k_{\perp})\frac{\partial}{\partial k_{\perp}}\phi(k_{\perp}) = -\frac{\eta}{Ck_{\perp}^{7}}.$$
(26)

•
$$v_{ph}(k_{\perp}) \rightarrow k_{\perp} \Rightarrow \rho^{2}(k_{\perp}) \sim \varepsilon k_{\perp}^{-7} \Rightarrow \phi(k_{\perp}) \sim a + bk_{\perp}$$
 where
 $0 > b \propto \eta/\varepsilon \Rightarrow E^{\pm}(k_{\perp}) \sim k_{\perp}^{-5/2} e^{\pm bk_{\perp}}$

• So one solutions exponentially diverge, unless we make modifications (confirmed in strong NDE simulation)

• When we choose $\chi = 1$ this problem is cured

Weak turbulence analytics

Strong turbulence simulation

We can rewrite the stationary weak diffusive equations using

$$E^{\pm}(k_{\perp}) =: \frac{1}{2} k_{\perp} \rho(k_{\perp}) e^{\pm \phi(k_{\perp})}.$$
 (24)

so that $|E_C(k_{\perp})| \le E(k_{\perp})/v_{ph}(k_{\perp})$. NDE rewrites

$$\frac{\partial}{\partial k_{\perp}} \rho^{2}(k_{\perp}) = -\frac{2\varepsilon}{Ck_{\perp}^{7} v_{ph}(k_{\perp})}$$
(25)
$$\rho^{2}(k_{\perp}) \frac{\partial}{\partial k_{\perp}} \phi(k_{\perp}) = -\frac{\eta}{Ck_{\perp}^{7}}.$$
(26)

•
$$v_{ph}(k_{\perp}) \rightarrow k_{\perp} \Rightarrow \rho^{2}(k_{\perp}) \sim \varepsilon k_{\perp}^{-7} \Rightarrow \phi(k_{\perp}) \sim a + bk_{\perp}$$
 where
 $0 > b \propto \eta/\varepsilon \Rightarrow E^{\pm}(k_{\perp}) \sim k_{\perp}^{-5/2} e^{\pm bk_{\perp}}$

- So one solutions exponentially diverge, unless we make modifications (confirmed in strong NDE simulation)
- When we choose $\chi = 1$ this problem is cured.

George Miloshevich

Weak turbulence

Strong turbulence simulation

We can rewrite the stationary weak diffusive equations using

$$E^{\pm}(k_{\perp}) =: \frac{1}{2} k_{\perp} \rho(k_{\perp}) e^{\pm \phi(k_{\perp})}.$$
 (24)

so that $|E_C(k_{\perp})| \le E(k_{\perp})/v_{ph}(k_{\perp})$. NDE rewrites

$$\frac{\partial}{\partial k_{\perp}} \rho^{2}(k_{\perp}) = -\frac{2\varepsilon}{Ck_{\perp}^{7}v_{ph}(k_{\perp})}$$
(25)
$$\rho^{2}(k_{\perp})\frac{\partial}{\partial k_{\perp}}\phi(k_{\perp}) = -\frac{\eta}{Ck_{\perp}^{7}}.$$
(26)

•
$$v_{ph}(k_{\perp}) \rightarrow k_{\perp} \Rightarrow \rho^{2}(k_{\perp}) \sim \varepsilon k_{\perp}^{-7} \Rightarrow \phi(k_{\perp}) \sim a + bk_{\perp}$$
 where
 $0 > b \propto \eta/\varepsilon \Rightarrow E^{\pm}(k_{\perp}) \sim k_{\perp}^{-5/2} e^{\pm bk_{\perp}}$

- So one solutions exponentially diverge, unless we make modifications (confirmed in strong NDE simulation)
- When we choose $\chi = 1$ this problem is cured.

George Miloshevich

Presence of dispersion range increases imbalance

Dispersive case, $k_d = k_d(v)$

Imbalance vs. cross-helicity to energy flux ratio.

- The size of the dispersive range is determined by k_d , which is set by v
- This size has significant impact on the size of imbalance: $E_+/E_-!$
- It appears that imbalance strongly depends on the cross-helicity flux η
- The imbalance is also more pronounced for lower values of β_{g}

Presence of dispersion range increases imbalance

Dispersive case, $k_d = k_d(v)$

Imbalance vs. cross-helicity to energy flux ratio.

- The size of the dispersive range is determined by k_d , which is set by v
- This size has significant impact on the size of imbalance: $E_+/E_-!$
- It appears that imbalance strongly depends on the cross-helicity flux η
- The imbalance is also more pronounced for lower values of β_i
Presence of dispersion range increases imbalance

Dispersive case, $k_d = k_d(v)$

Imbalance vs. cross-helicity to energy flux ratio.

- The size of the dispersive range is determined by k_d , which is set by v
- This size has significant impact on the size of imbalance: $E_+/E_-!$
- It appears that imbalance strongly depends on the cross-helicity flux η
- The imbalance is also more pronounced for lower values of β

George Miloshevich

Presence of dispersion range increases imbalance

Dispersive case, $k_d = k_d(v)$

Imbalance vs. cross-helicity to energy flux ratio.

- The size of the dispersive range is determined by k_d , which is set by v
- This size has significant impact on the size of imbalance: $E_+/E_-!$
- It appears that imbalance strongly depends on the cross-helicity flux η
- The imbalance is also more pronounced for lower values of β_e

George Miloshevich

- In solar wind plasmas are collisionless so (hyper)dissipation is unphysical
- We confirm that in case of low beta $\beta_e = 0.04$ electron contribution is stronger
- Terms $-2\gamma E$ and $-2\gamma E_C$ are introduced in spectral equations
- The expression for damping^[18]is derived from linearized of gyrokinetics

$$\gamma = \sqrt{\frac{\pi}{2}} \frac{\delta}{\beta_e} \frac{1}{1 + 4(1 + \tau)^{-2} \beta_e^{-2}} \widetilde{k}_{\parallel} k_{\perp}^2,$$

Wave-particle resonance

• Transfer time is also modified however the contribution is negligible.

- In solar wind plasmas are collisionless so (hyper)dissipation is unphysical
- We confirm that in case of low beta $\beta_e = 0.04$ electron contribution is stronger
- Terms $-2\gamma E$ and $-2\gamma E_C$ are introduced in spectral equations
- The expression for damping^[18] is derived from linearized of gyrokinetics

$$\gamma = \sqrt{\frac{\pi}{2}} \frac{\delta}{\beta_e} \frac{1}{1 + 4(1 + \tau)^{-2} \beta_e^{-2}} \widetilde{k}_{\parallel} k_{\perp}^2,$$

Wave-particle resonance

• Transfer time is also modified however the contribution is negligible.

- In solar wind plasmas are collisionless so (hyper)dissipation is unphysical
- We confirm that in case of low beta $\beta_e = 0.04$ electron contribution is stronger
- Terms $-2\gamma E$ and $-2\gamma E_C$ are introduced in spectral equations
- The expression for damping^[18] is derived from linearized of gyrokinetics

$$\gamma = \sqrt{\frac{\pi}{2}} \frac{\delta}{\beta_e} \frac{1}{1 + 4(1 + \tau)^{-2} \beta_e^{-2}} \widetilde{k}_{\parallel} k_{\perp}^2,$$

(27)

Wave-particle resonance

• Transfer time is also modified however the contribution is negligible.

[18] G. G. Howes et al., ApJ **651**, 590–614 (2006)

- In solar wind plasmas are collisionless so (hyper)dissipation is unphysical
- We confirm that in case of low beta $\beta_e = 0.04$ electron contribution is stronger
- Terms $-2\gamma E$ and $-2\gamma E_C$ are introduced in spectral equations
- The expression for damping^[18] is derived from linearized of gyrokinetics

$$\gamma = \sqrt{\frac{\pi}{2}} \frac{\delta}{\beta_e} \frac{1}{1 + 4(1 + \tau)^{-2} \beta_e^{-2}} \widetilde{k}_{\parallel} k_{\perp}^2,$$

27

Wave-particle resonance

[18]

• Transfer time is also modified however the contribution is negligible.

G. G. Howes et al., ApJ 651, 590-614 (2006) George Miloshevich

milosh@utexas.edu

G. G. Howes et al., ApJ 651, 590-614 (2006)

- In solar wind plasmas are collisionless so (hyper)dissipation is unphysical
- We confirm that in case of low beta $\beta_e = 0.04$ electron contribution is stronger
- Terms $-2\gamma E$ and $-2\gamma E_C$ are introduced in spectral equations
- The expression for damping^[18] is derived from linearized of gyrokinetics

$$\gamma = \sqrt{\frac{\pi}{2}} \frac{\delta}{\beta_e} \frac{1}{1 + 4(1 + \tau)^{-2} \beta_e^{-2}} \widetilde{k}_{\parallel} k_{\perp}^2,$$

(27)

Wave-particle resonance

• Transfer time is also modified however the contribution is negligible.

[18]

Landau damping effects

Different models of dissipation

Steepening of the energy spectra vs η .

Results

- Correct mechanism of dissipation has a profound effect on the dispersion range
- When $\chi < 1$ we see the possibility of having in a knee in the spectrum
- Non-universality: for larger values η injection the spectrum becomes steeper.

Landau damping effects

Different models of dissipation

Steepening of the energy spectra vs η .

Results

- Correct mechanism of dissipation has a profound effect on the dispersion range
- When $\chi < 1$ we see the possibility of having in a knee in the spectrum
- Non-universality: for larger values η injection the spectrum becomes steeper.

Landau damping effects

Different models of dissipation

Steepening of the energy spectra vs η .

Results

- Correct mechanism of dissipation has a profound effect on the dispersion range
- When $\chi < 1$ we see the possibility of having in a knee in the spectrum
- Non-universality: for larger values η injection the spectrum becomes steeper.

Inverse cascade of cross-helicity and forward of energy

Dispersive case: Fluxes for $k_f \sim 0.016$

Small scale to large scale cross-helicity injection ratio needed to drive the inverse cascade

• In presence of reservoir E_{\pm} it is possible to drive η_{-} from small scales

Inverse cascade exists even in MHD but is stronger when dispersive range is present

• In sub-ion range E_C approaches magnetic-helicity so is perhaps related to Ref. ^[19]

[19] U. Frisch et al., J. of Fluid Mech. 68, 769–778 (1975)

George Miloshevich

Inverse cascade of cross-helicity and forward of energy

Dispersive case: Fluxes for $k_f \sim 0.016$

Small scale to large scale cross-helicity injection ratio needed to drive the inverse cascade

- In presence of reservoir E_{\pm} it is possible to drive η_{-} from small scales
- Inverse cascade exists even in MHD but is stronger when dispersive range is present
- In sub-ion range E_C approaches magnetic-helicity so is perhaps related to Ref. ^[19]

U. Frisch et al., J. of Fluid Mech. 68, 769–778 (1975)

[19]

Outline

Introduction

- MHD Turbulence
- Hamiltonian gyrofluid model
- Influence of the dispersive range
 Nonlinear diffusion equation
 - Landau damping
 - Inverse Cascade

3 Conclusion

- Comparisons with 3D gyrofluid simulations
- Future Work

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

- In particular the amount of imbalance strongly depends on the size of k_d
- ToDo: Measure correlation lengths k[±]₁ and estimate X

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

- In particular the amount of imbalance strongly depends on the size of k_d

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

- In particular the amount of imbalance strongly depends on the size of k_d

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

- In particular the amount of imbalance strongly depends on the size of k_d
- ToDo: Measure correlation lengths k_{\parallel}^{\pm} and estimate χ

Growth of imbalance E_+/E_- vs. time

George Miloshevich

milosh@utexas.edu

Université Côte d'Azur 18 / 18

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

• In particular the amount of imbalance strongly depends on the size of k_d

• ToDo: Measure correlation lengths k_{μ}^{\pm} and estimate χ

Growth of imbalance E_+/E_- vs. time

George Miloshevich

milosh@utexas.edu

Université Côte d'Azur 18 / 18

- We have analysed consequences of NDEs that describe imbalanced KAW turbulence
- We conclude that dispersive range significantly affects the imbalance
- The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims

- In particular the amount of imbalance strongly depends on the size of k_d
- ToDo: Measure correlation lengths $\tilde{k}^{\pm}_{\parallel}$ and estimate χ

Growth of imbalance E_+/E_- vs. time

George Miloshevich

milosh@utexas.edu

Université Côte d'Azur 18 / 18