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Alfvén Wave turbulence in the Solar Wind (SW)

Alfvén Waves (AW) play an important role in SW [1]

Reflection leads to backward propagating waves
SW turbulence results from these interactions.
SW turbulence has mostly been studied using MHD

Driving Inertial Dissipative

k

Schematics of a forward cascade to small scales
SW is collisionless so kinetical treatment is ideal

Microscale dispersive gyro-scales play a role
Imbalanced turbulence [2]is of interest for (PSP)
Direct Vlasov-Maxwell simulations are too costly
Recourse to gyrofluids is more feasible[3]

Describe the transition to imbalanced dispersive range

Parker Solar Probe (PSP)

Wind Data.[1] F. Sahraoui et al., PRL 102, 231102 (2009)
[2] R. T. Wicks et al., PRL 106, 045001 (2011)
[3] T. Passot and P. L. Sulem, JPP 85, 905850301 (2019)

George Miloshevich milosh@utexas.edu Université Côte d’Azur 2 / 18
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Weak balanced magnetohydrodynamic (MHD) turbulence
Before discussing dispersive effects we review what is known about MHD

Using Elsässer variables w± := v ± b, MHD can be cast:

∂tw
± ± VA∂zw

± = −w∓ · ∇w± − ∇P, ∇ ·w± = 0, P = −∇−2(∇w+ : ∇w−) (1)

only counter propagating waves interact

Assuming weak balanced cascade[4], many w± collisions before cascading τnl � τA

w+k⊥ = w−k⊥, w+k⊥w
−
k⊥
∝ k−1⊥ ⇒ w±k⊥ ∝ k−1/2⊥ (2)

Criticism of weak MHD turbulence[5]: Because AW have ω±p = ±VAk‖

p + q = k

ω±p + ω
∓
q = ω

±
k
⇒ p‖ − q‖ = k‖

}
⇒ p‖ = k‖, q‖ = 0 (3)

So in MHD it involves scattering of AW off a 2D perturbation (q‖ = 0)

As weak cascade proceeds eventually τnl ∼ k⊥wk⊥ ∼ τA → and becomes strong
[4] C. S. Ng and A. Bhattacharjee, PoP 4, 605–610 (1997)
[5] A. A. Schekochihin, MHD Turbulence: A Biased Review, submitted to JPP
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Pinning in case of imbalance and strong MHD turbulence
Imbalanced cascades are much more common

When w+k⊥ , w−k⊥ additional criterion is required

This is provided by the phenomenon of pinning [6][7]

Weak turbulence proceeds to become strong

Goldreich and Sridhar[8]introduced anisotropic theory
postulating critical balance
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10−4

10−2

100
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E
+

an
d

E
−

scaling
= −4

Pinning

E+

E−
E+ ∗ E−

Weak E±(k⊥) := wk⊥
2/k⊥

k‖VA ∼ k⊥v⊥ ε ∼
V3

A

L
, ε ∼

v2⊥
tcas

, tcas ∼
1

k‖VA
⇒ k‖ ∼ k2/3⊥ L−1/3 (4)

Role of dynamical alignment leading to −3/2 energy spectrum[9]

High resolution MHD simulations suggest −5/3 energy spectrum[10]

[6] R. Grappin et al., Astron. and Astroph. 126, 51–58 (1983)
[7] Y. Lithwick et al., ApJ 582, 1220–1240 (2003)
[8] P. Goldreich and S. Sridhar, ApJ 438, 763–775 (1995)
[9] S. Boldyrev et al., ApJ 699, L39–L42 (2009)
[10] A. Beresnyak, ApJ 784, L20 (2014)
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Addressing the dispersive range in Solar wind
We leave the controversy of MHD and instead address dispersive scales

Our description must involve small βe relevant for the solar wind near the sun

kinetic scales of interest are: Ion ρi and sonic ρs Larmor radii

Relative kinetic plasma modes[11]
Electron beta

[11] V. Roytershteyn et al., ApJ 870, 103 (2019)
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Hamiltonian reduced gyrofluid model (GYRO)

In order to understand gyroscale physics gyrokinetics [12](5D) is often employed
Numerical solutions of developed spectra are too costly even for this model
Therefore, it is desirable to find some closure for a 3D gyrofluid model
A Hamiltonian closure of this kind has been found recently [13].
Omitting effects of electron inertia me/mi = 0 the simplified equations read:

Bz drift

2ρ

Larmor gyration

∂t Ne + VA
2 ∇‖∆⊥A‖ = ∇(Bz − ϕ) × ∇Ne · ẑ (5)

∂t A‖ + ∇‖(ϕ − Ne − Bz) = 0, (6)

∇‖ f := ∂ f /∂z + ∇(A‖) × ∇ f · ẑ (7)

Bz = M̂1(τ∆⊥) [ϕ] Ne = −M̂2(τ∆⊥) [ϕ] (8)

Here M̂1,2 are operators related to modified Bessel functions

βe = 8πn0T0e/B2
0, Ωi = eB0/mic, τ = T0i/T0e (9)

gyrocenter density

magnetic potentialelectrostatic pot.

[12] A. Brizard, Phys. Fluids B 4, 1213–1228 (1992)
[13] T. Passot et al., PoP 25, 042107 (2018)
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Bz = M̂1(τ∆⊥) [ϕ] Ne = −M̂2(τ∆⊥) [ϕ] (8)

Here M̂1,2 are operators related to modified Bessel functions

βe = 8πn0T0e/B2
0, Ωi = eB0/mic, τ = T0i/T0e (9)

gyrocenter density

magnetic potentialelectrostatic pot.

[12] A. Brizard, Phys. Fluids B 4, 1213–1228 (1992)
[13] T. Passot et al., PoP 25, 042107 (2018)

George Miloshevich milosh@utexas.edu Université Côte d’Azur 7 / 18
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https://doi.org/10.1063/1.5022528


Hamiltonian reduced gyrofluid model (GYRO)

In order to understand gyroscale physics gyrokinetics [12](5D) is often employed
Numerical solutions of developed spectra are too costly even for this model
Therefore, it is desirable to find some closure for a 3D gyrofluid model
A Hamiltonian closure of this kind has been found recently [13].
Omitting effects of electron inertia me/mi = 0 the simplified equations read:

Bz drift

2ρ

Larmor gyration

∂t Ne + VA
2 ∇‖∆⊥A‖ = ∇(Bz − ϕ) × ∇Ne · ẑ (5)
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Kinetic Alfvén Waves & invariants of a gyrofluid model

In nondimensional form the length is normalized to sonic Larmor radius ρs.

ρs = cs/Ωi, cs :=
√

Toe/mi, ρi =
√
2τρs, τ = T0i/T0e (10)

Introducing µ± := Λ̂φ ± VAA‖ - Elsässer potentials, where Λ̂ := Λ̂(∆⊥, M̂1, M̂2)

In MHD τ � 1,∆⊥ � 1⇒ Λ̂→ 1⇒ w± → ∇µ± × ẑ are like MHD Elsässer fields

Model describes Kinetic Alfvén Waves (KAW): ω→ α(βe, τ) k‖k⊥ as k →∞

Energy and generalized cross-helicity conserved:

KAW have Vph

E =
1

2

∫ (
V2

A |∇⊥A‖ |2 − Ne(ϕ − Ne − Bz)

)
d3x, (11)

EC = −

∫
Ne A‖ d3x →

{
−

∫
ωiz A‖ d3x, In MHD(
2

βe+βi
+ 1

) ∫
Bz A‖ d3x, sub-ion

(12)
We can also introduce energies associated with “backward” and

“forward” propagating waves: E± :=
1
2

∫
(µ±)2 d3x
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Kinetic Alfvén Waves & invariants of a gyrofluid model

In nondimensional form the length is normalized to sonic Larmor radius ρs.

ρs = cs/Ωi, cs :=
√

Toe/mi, ρi =
√
2τρs, τ = T0i/T0e (10)
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Introducing µ± := Λ̂φ ± VAA‖ - Elsässer potentials, where Λ̂ := Λ̂(∆⊥, M̂1, M̂2)

In MHD τ � 1,∆⊥ � 1⇒ Λ̂→ 1⇒ w± → ∇µ± × ẑ are like MHD Elsässer fields
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Steps to derive wave kinetic equation: Ask me later?

Using Fourier decomposition, aσk

k
:= eiω

σk
k

t kµσk

k
, τN L � ω−1, σ = ± and

Ω
σkσpσq

k;pq
= ωσk

k
− ω

σp

p − ω
σq

q = σkvph(k⊥)k‖ − σpvph(p⊥)p‖ − σqvph(q⊥)q‖ . (13)

resonance condition one obtains wave kinetic equation:

∂tQσ
k = 4π

∫ ∑
σp,σq

δ(k + p + q)δ(Ω
σσpσq

kpq
)

Vσσpσq

kpq

{(
Vσpσqσ

pqk
Qσq

q + Vσqσpσ

qpk
Qσp

p

)
Qσ

k + Vσσpσq

kpq
Qσp

p Qσq

q

}
dpdq., (14)

where

〈aσk

k
aσk ′

k′
〉 =: Qσkσk ′

k
δ(k + k′)� Qσ

k =
1

πk⊥

(
E(k⊥, k‖) + σvph(k⊥)EC(k⊥, k‖)

)
. (15)

and introducing notation ξ := VA/Vph, the vertex is defined as

Vσkσpσq

kpq
:=

ẑ · (p × q)

8 ξ(k⊥)

(
σp

ξ(p⊥)
−

σq

ξ(q⊥)

)
σpσq

k⊥p⊥q⊥

(
σk k2⊥ξ(k⊥) +

	
p.q.k

)
(16)
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Nonlinear diffusion equations (NDE) for weak turbulence

Assuming isotropy in the transverse plane we can collapse∫
dpdqδ(k + p + q) → 2π

∫
dp‖dq‖δ(k‖ + p‖ + q‖)

∫
∆k⊥

(1/sinα)dp⊥dq⊥ (17)

In addition, assuming local interactions k⊥ ≈ p⊥ ≈ q⊥ and k‖ ≈ p‖ ≈ q‖
E± = (E ± VphEC)/2

Under these
assumptions
nonlinear diffusion
equation for energy
and cross-helicity has
been derived[14]

∂

∂t
E
2
=

∂

∂k⊥

{
k6⊥Vph

∑
r=±1

E (−r) ∂

∂k⊥

(E (r)

k⊥

)}
(18)

∂

∂t
EC

2
=

∂

∂k⊥

{
k6⊥

∑
r=±1

(−1)r E (−r) ∂

∂k⊥

(E (r)

k⊥

)}
(19)

[14] T. Passot and P. L. Sulem, JPP 85, 905850301 (2019)
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Nonlinear diffusion equations (NDE) for weak turbulence

Assuming isotropy in the transverse plane we can collapse∫
dpdqδ(k + p + q) → 2π

∫
dp‖dq‖δ(k‖ + p‖ + q‖)

∫
∆k⊥

(1/sinα)dp⊥dq⊥ (17)

In addition, assuming local interactions k⊥ ≈ p⊥ ≈ q⊥ and k‖ ≈ p‖ ≈ q‖
E± = (E ± VphEC)/2

Under these
assumptions
nonlinear diffusion
equation for energy
and cross-helicity has
been derived[14]

∂

∂t
E
2
=

∂

∂k⊥

{
k6⊥Vph

∑
r=±1

E (−r) ∂

∂k⊥

(E (r)

k⊥

)}
(18)

∂

∂t
EC

2
=

∂

∂k⊥

{
k6⊥

∑
r=±1

(−1)r E (−r) ∂

∂k⊥

(E (r)

k⊥

)}
(19)

[14] T. Passot and P. L. Sulem, JPP 85, 905850301 (2019)
George Miloshevich milosh@utexas.edu Université Côte d’Azur 10 / 18



Phenomenological extension to strong turbulence
As turbulence proceeds to small scales it ceases to be weak: τN L ∼ τL

In strong turbulence parallel transfer is non-negligible k̃‖ , const

In weak turbulence the transfer time is: τ±tr,w = (k
3
⊥VphE∓)−1, ωL := Vph k̃‖

In strong turbulence transfer time is modified consistently with critical balance

τ±tr,w = (τ
±
N L)

2ωL ⇒ τ±N L ∼ (k
3
⊥V2

phE∓)−1/2 ∼ τL = (Vph k̃‖)−1 (20)

The effect of χ in MHD

The + wave affects the correlation length of − so

k̃(r)
‖
= (k3⊥E (r))1/2

(E+

E−

) (1−r)χ/4
, r = ±1 (21)

When χ = 0 both E+ and E− cascades are strong.

It is reasonable to treat E+ weakly [15], where χ = 1

DNS MHD simulations [16]are consistent with χ ∼ 1/4

[15] B. D. G. Chandran, The Astrophysical Journal 685, 646–658 (2008)
[16] A. Beresnyak and A. Lazarian, ApJ 682, 1070–1075 (2008)
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Numerical scheme for NDE - Ask me later?

1

2

∂

∂t

(
E
EC

)
=

∂

∂k⊥

{
k6⊥

(
Vph
1

) ∑
r=±1

(
1
(−1)r

)
E (−r)

k̃±
‖

∂

∂k⊥

(E (r)

k⊥

)}
=:

∂

∂k⊥

(
ε
η

)
(22)

We are modeling coupled nonlinear diffusion equations of Leith type.

Code for Gravitational wave turbulence [17]was used with modified the scheme
Fields are evaluated on the expanding grid.

ki = k0 · λi (23)

Changes that were made:

1 Modification of the finite differencing

2 The addition for dispersive effects

3 Support for strong turbulence

4 Implementation of Landau damping
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Coupling the grid using interpolated values
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Value of the correlation coefficient in the dispersive case?

Weak turbulence
analytics

Strong turbulence
simulation

We can rewrite the stationary weak diffusive equations using

E±(k⊥) =:
1

2
k⊥ρ(k⊥)e±φ(k⊥). (24)

so that |EC(k⊥)| ≤ E(k⊥)/vph(k⊥). NDE rewrites

∂

∂k⊥
ρ2(k⊥) = −

2ε

Ck7⊥vph(k⊥)
(25)

ρ2(k⊥)
∂

∂k⊥
φ(k⊥) = −

η

Ck7⊥
. (26)

vph(k⊥) → k⊥ ⇒ ρ2(k⊥) ∼ εk−7⊥ ⇒ φ(k⊥) ∼ a + bk⊥ where

0 > b ∝ η/ε ⇒ E±(k⊥) ∼ k−5/2⊥ e±bk⊥

So one solutions exponentially diverge, unless we make
modifications (confirmed in strong NDE simulation)

When we choose χ = 1 this problem is cured.
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Presence of dispersion range increases imbalance
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Dispersive case, kd = kd(ν)
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Imbalance vs. cross-helicity to energy flux ratio.

The size of the dispersive range is determined by kd, which is set by ν

This size has significant impact on the size of imbalance: E+/E−!

It appears that imbalance strongly depends on the cross-helicity flux η

The imbalance is also more pronounced for lower values of βe
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Landau Damping as a turbulence sink

In solar wind plasmas are collisionless so (hyper)dissipation is unphysical

We confirm that in case of low beta βe = 0.04 electron contribution is stronger

Terms −2γE and −2γEC are introduced in spectral equations

The expression for damping[18]is derived from linearized of gyrokinetics

Wave-particle resonance

γ =

√
π

2

δ

βe

1

1 + 4(1 + τ)−2β−2e
k̃‖k2⊥, (27)

Transfer time is also modified however the contribution is negligible.

[18] G. G. Howes et al., ApJ 651, 590–614 (2006)
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Landau damping effects
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Steepening of the energy spectra vs η.

Results
Correct mechanism of dissipation has a profound effect on the dispersion range

When χ < 1 we see the possibility of having in a knee in the spectrum

Non-universality: for larger values η injection the spectrum becomes steeper.
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Inverse cascade of cross-helicity and forward of energy
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Dispersive case: Fluxes for k f ∼ 0.016
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Small scale to large scale cross-helicity injection
ratio needed to drive the inverse cascade

In presence of reservoir E± it is possible to drive η− from small scales

Inverse cascade exists even in MHD but is stronger when dispersive range is present

In sub-ion range EC approaches magnetic-helicity so is perhaps related to Ref. [19]

[19] U. Frisch et al., J. of Fluid Mech. 68, 769–778 (1975)
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MHD Turbulence
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Comparison with direct 3D gyrofluid simulations

We have analysed consequences of NDEs that describe imbalanced KAW turbulence
We conclude that dispersive range significantly affects the imbalance
The dissipation mechanism is important, e.g. Landau damping

Preliminary results from 3D DNS are supporting some of the claims
In particular the amount of imbalance strongly depends on the size of kd

ToDo: Measure correlation lengths k̃±
‖

and estimate χ

Turbulent current jz
.

Spectra E± for different box sizes Growth of imbalance E+/E− vs. time
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