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Introduction

I There is a wide class of space and astrophysical plasmas where non-ideal MHD
effects are important (such as 2-fluid), high frequency or short scales.

I Extended MHD (XMHD) is formally 1-fluid model endowed with 2-fluid effects:
electron inertia and Hall drift described by IMHD and HMHD limits respectively.

I These mutually exclusive effects were unified in a Hamiltonian model [5].
I Advantages of Hamiltonian methods include:

I Systematic means for constructing equilibria, e.g. Beltrami flows.
I Clear derivation of reduced models avoiding introduction of spurious dissipation.
I Extraction of invariants such us helicity that plays a major role in this study.
I Understanding of how collisionless reconnection operates by taking advantage of the underlying Hamiltonian structure
I Natural means of arriving at weak turbulence theories.
I Useful in constructing numerical integrators that automatically conserve invariants.

I Geometrical and topological properties of generalized helicities are investigated [7].
I Unusual connection between XMHD and Chern-Simons theory (TQFT) explored [7].
I Energy and helicity cascades are studied in 3D XMHD turbulence [1].
I Study addresses recent interest in sub-electron scales that have become observable.

The Model: extended magnetohydrodynamics (XMHD)

Adopting XMHD ordering with electron inertia effects up to first order in electron mass.
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The generalized Ohm’s law (assuming Ti < Te we ignore ion pressure pe � pime/mi):

E + V × B = di
J× B−∇pe

ρ︸ ︷︷ ︸
Hall term

+ d 2
e

[ ∂
∂t

J

ρ
+ V · ∇ J

ρ
+
J

ρ
· ∇V

]
− did

2
e

J

ρ
· ∇ J

ρ︸ ︷︷ ︸
electron inertia

(2)

Here di ,e = c/(ωpe,i`) are ion and electron skin depths normalized to scale length ` and
ωpe,i are the respective plasma frequencies. Normalized Alfvén units used.
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Common Hamiltonian structure of XMHD brackets

Hall MHD is equipped with a noncanonical bracket [2] (barotropic equation of state):

{F ,G}HMHD = {F ,G}MHD + di
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Nontrivial coordinate change [5] {F ,G}XMHD ≡ {F ,G}HMHD [di − 2κ±; B±] , (5)

where κ2 − diκ− d 2
e = 0;

ion/electron velocity︷ ︸︸ ︷
V± = V − κ∓∇× B/ρ and

generalized magnetic vorticity︷ ︸︸ ︷
B± = B? + κ±∇× V

Because the bracket is noncanonical it exibits Casimirs C such that ∀F : {F ,C} = 0.

∇CZ z(t)

C = const.

Figure: Foliation of phase space Z by Casimirs C in finite
dimensions. Observe how dynamical system evolves (z = z(t))
on individual Casimir leaves. But field theories like XMHD are
uncountably infinite dimensional!
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Under (5) one obtains more general
XMHD Casimirs (Kinematical Constants of
Motion):
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Generalized helicity conservation through the geometric lens

Let A± be a 1-form associated with the components of general. vector potential A±
and generating the 2-form B± = dA± and the 3-form C± = A± ∧ dA±, XMHD [7] has

Lie-dragging
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In coordinates (8) means
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Figure: Schematics of two generalized frozen-flux constraints
B± · dS± = B0

± · dS0
±, where dS± denote the corresponding

area elements. It is possible to view the same statement as Lie
dragging.

for 3-form dual to helicity density we have
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Thus, Conservation of generalized helicities
(Casimir invariants) can be encapsulated in
geometric terms as the Lie-dragging of
3-forms.

Topological aspects of XMHD

Flux ψ :=
∫
S±(t) B± · dS of a filament with an axis of a given Twist and Writhe.
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Figure: Helicity of linked flux tubes.
C =

∫
d3x A · B = ψ1ψ2 + ψ2ψ1.

Figure: Roughly speaking, Twist
measures number of windings of an
outer field line around the axis.

+ −

Figure: Writhe = 〈ν+ − ν−〉,
measures self-crossing number of the
axis averaged over solid angle.

I Problem: Linking numbers do not distinguish between distinct topologies.
I Solution: Knot polynomials.
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Figure: Whitehead Link
Figure: Borromean Links

I In fluids [6] e
∫
d3x v ·∇×v satisfies skein relations of Jones polynomial (some assump.).

I We propose [7] the use of Jones polynomials in XMHD (2 of them for each helicity).

(a) figure-8 (b) trefoil

Figure: Numerically constructed filament-like tube in the form of figure-8 and trefoil. Magnetic field around the axis has a
Gaussian profile and is parallel to the axis. Orange rings show current density stream lines at chosen locations. (a) The axis
has Wr ≈ .717 but the tube is framed to have Tw = 0, i.e. field vectors are parallel to the axis (displayed by arrows). (b)
The axis has Wr ≈ 3.22 but the tube is framed to have Tw = 0. In both cases helicity is numerically confirmed to be due to
Writhe linking. This requires finding associated vector potential, e.g. by solving Poisson’s equation with the appropriate B.C.

3D Turbulence in incompressible extended MHD

Driving Range Inertial Range Dissipative Range

k

Figure: Schematics of a standard Richardson-Kolmogorov direct cascade. Energy is injected in low k , for e.g. via large scale
stirring, cascades (flows) through the inertial range and dissipates at small scales (large k). Upon reversal of the arrows along
with the driving and dissipative ranges, the mechanism of the inverse cascade is obtained.

Symmetric two-point correlations (taken at x′ and x) of generalized helicities satisfy
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I More symmetry than in HMHD, where C− has inverse and C+ has both cascades [8].
I To determine direction of cascading we investigate absolute equilibrium states [1].
I The turbulence would relax into these states if not for the continual input of energy.
I We also prove that XMHD satisfies Liouville theorem in Fourier k space [1].
I To establish a bridge between MHD [9] and XMHD results we introduce Casimirs:
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Phase space probability density P = Z−1 exp[−αH − βHM − γHC ] (15)

The resulting states are plotted, for HMHD set de = 0, IMHD - di = 0;
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(b) IMHD magnetic helicity
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(c) IMHD cross-helicity

Figure: Absolute equilibria states of spectral quantities with parameters α = 10, β = 5. (a) The HMHD regime, di = 0.1.
The solid red line corresponds to 〈HC〉/〈H〉 ≈ 0.03, the dashed green line corresponds to 〈HC〉/〈H〉 ≈ 0.09, and the
dot-dashed blue line corresponds to 〈HC〉/〈H〉 ≈ 0.16. The spectral range is chosen to be 1 < k < d−2i . (b) IMHD magnetic
helicity, de = 0.1. (c) IMHD cross-helicity with 〈HC〉/〈H〉 ≈ 0.09, 〈HC〉/〈H〉 ≈ 0.28, 〈HC〉/〈H〉 ≈ 0.46, 1 < k < d−2e .

I Inverse cascade is predicted only for magnetic helicity in HMHD range if HC � H .
I IMHD range is characterized by direct cascades for energy, and both helicities.

Short Summary

We have used the noncanonical Hamiltonian formulation of extended MHD models to
arrive at their common mathematical structure, which manifests itself via the existence
of generalized helicities and Lie-dragged 2-forms. These helicities, which are topological
invariants, can be further studied through a host of techniques, including the Jones poly-
nomial. We expect that in 3D turbulence the (generalized) magnetic helicity undergoes
inverse cascade up to a certain length scale (for a given choice of the free parameters),
and then undergoes a cascade reversal. When electron inertia effects were taken to be
dominant over the Hall term (IMHD regime) we found that equipartition that was lost
in HMHD was recovered.
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